Optimization
Modeling with

LINGO

Sixth Edition

LINDO Systems, Inc.

1415 North Dayton Street, Chicago, lllinois 60622
Phone: (312)988-7422 Fax: (312)988-9065
E-mail: info@lindo.com

TRADEMARKS

What’sBest! and LINDO are registered trademarks and LINGO is a trademark of LINDO Systems,
Inc. Other product and company names mentioned herein are the property of their respective owners.

Copyright © 2006 by LINDO Systems Inc
All rights reserved. First edition 1998
Sixth edition, April 2006
Printed in the United States of America
First printing 2003

ISBN: 1-893355-00-4

Published by

LINDO SHSTEMS INC.

1415 North Dayton Street
Chicago, Illinois 60622
Technical Support: (312) 988-9421
http://www.lindo.com
e-mail: tech@lindo.com

Contents

=Y - T xiii
ACKNOWIEAGMENTS......eeeii e e Xiii

1 What Is Optimization? ... sssnr e e e snmn e e e s mmmn e e e e e an 1
R 1 oo [o o o S 1
1.2 A Simple Product MixX Problem............oo e 1
1.2.1 GraphiCal ANAIYSISoouiiiieiiiiee ettt e et e e e enbeeeeea 2

LG T4 PP PP RPN 5
1.4 Analysis Of LP SOIULIONSccoiiiiiiiiiii e 6
1.5 Sensitivity Analysis, Reduced Costs, and Dual Prices...........cccccviviiiiiiiciie e, 8
1.5.1 REAUCEA COSES ...ttt e e e et e e s st e e e staeeeesneeeeeans 8
1.5.2 DUAI PFICES ...ttt e e e e e e e e e e e e nnnnneeeas 8

1.6 Unbounded FOrMUIALIONScoiiiiiiiiiiec e 9
1.7 Infeasible FOrMUIAtIONScoiiiiiii e 10
1.8 Multiple Optimal Solutions and DEGENEracCycccovccuiiiiiieeee i 11
1.8.1 The “Snake Eyes” CONItIONcocuueiiiiiiiiiiiiee e 13
1.8.2 Degeneracy and Redundant CoNnstraints............occeeveiiiiiieiniiiee e 16

1.9 Nonlinear Models and Global Optimizationccccoiiiiiiii e 17
R 0 0] o] =T o T PR 18

2 Solving Math Programs with LINGOccccciiiimiiiiisr s 23
20 I | 1o To 18 o3 (T o I PP 23
2.2 LINGO TOr WINAOWS......ueiiiieiiiiieeeeitiee e sitiee e see e et e e s st e e e s nsaeaesnnseeaesennteeeeenneeeeennees 23
2.2 Fl8 MENU ...ttt e e e e e et e e e e e e e e e eeeeeae s 23
222 EQIEIMENU ..ot 25

2. 2.3 LINGO MENU ...ttt ettt sb e sttt e e e s s 27
2.2.4 WINAOWS MENU ...ttt anre e e s 28

2. 2.5 HEIP MENU ...ttt ettt e e e e ns 29
2.2.0 SUIMIMI@IY ..ttt ettt ettt e e et e et e e am bttt e e aabe et e e s tee e e e snneeeeaanbbeeesannneeeeannneeas 29

2.3 Getting Started on a Small Problem ... 29
2.4 Integer Programming With LINGOcocuuiiiiiiiii e 30
2.4.1 Warning for Integer Programs...........coouuiiii it 32

2.5 Solving an Optimization MOdEl...........ocoiiiiiiiiie e e 32

B S (o] o] =T 1 o - PP 33

RN B 11741 T ST o T 11 e o 1= 35
3.1 Economic Analysis of Solution REPOIS..........cccceiiiiiiiiiiiiiiec e 35
3.2 Economic Relationship Between Dual Prices and Reduced Costs...........ccccceeeveeeeenees 35
3.2.1 The Costing Out Operation: An llustrationcccooeiiiiii e 36
3.2.2 Dual Prices, LaGrange Multipliers, KKT Conditions, and Activity Costing 37

3.3 Range of Validity of Reduced Costs and Dual PriCeScooocuiiiiieiee i 38
3.3.1 Predicting the Effect of Simultaneous Changes in Parameters—The 100% Rule .43

3.4 Sensitivity Analysis of the Constraint Coefficients............cccoiiiii e, 44

iv Table of Contents

3.5 The Dual LP Problem, or the Landlord and the Renter...........cccoociviiiiiinieeee, 45
K G (0] o] [T o 1 =SSR 47
4 The Model Formulation ProCess..........cccciiiieiiirinnniir e s ssssss s sssssmnesens 53
4.1 The OVErall PrOCESS ...ttt et e e e e s e e e e e e e e et eaee e e e e e e s e nnnneneeeeas 53
4.2 Approaches to Model Formulation............c.coooiiiiiiiiii e 54
4.3 The Template APPrOACKoooi e e e e eeeae s 54
4.3.1 Product MiX Problems ...t 54
4.3.2 Covering, Staffing, and Cutting Stock Problems.............ccccoiiiiiiiiiee, 54
4.3.3 Blending Problems....... ... 54
4.3.4 Multiperiod Planning Problemsccoo e 55
4.3.5 Network, Distribution, and PERT/CPM Modelsc..cccccviiiiiiiiiiiieeiiee e 55
4.3.6 Multiperiod Planning Problems with Random Elements............cccccoveeeveiiiiicinnneen. 55
4.3.7 Financial Portfolio MOAEIS...........coiuiiiiiiiiii e 55
4.3.8 Game Theory MOGEIScooiiiiiiiiiiii e 56
4.4 Constructive Approach to Model Formulationccoooiiiiii e 56
I b = g o] L= RO 57
4.4.2 Formulating Our Example Problem ... 57
4.5 ChooSiNg COStS COMMECHIYcciiiiiiiiiiiiie et 58
4.5.1 Sunk vs. Variable COStS......ooii e 58
4.5.2 JOINE PPOAUCESeoiiiiiiiiiitiieee ettt e e e e e et e e e e e e e e anneeee 60
4.5.3 Book Value vs. Market Value............coooiiiii e 61
4.6 Common Errors in Formulating Models...........ccccoiiiiiiiii i 63
4.7 The NONSIiMUIANEItY EITOr........ccoo it e e 65
G o o o] 1= 0 3 T PR TRRR 66
5 The Sets View of the WOrld............oo i 69
CS 0t I [01 o o U T2 1T o PR 69
5.1 T WHY USE SIS ...ttt et e st e e st e e e e sbeeeeeans 69
B5.1.2 What Are St 7 ..ttt e e e e e e e e e e s 69
5. 1.3 TYPES OF SIS ..t 70
5.2 The SETS Section of @ MOdelcocoiiiiiiiiiiiie e 70
5.2.1 Defining Primitive SetS.......ccuiiiiiiiii e 70
5.2.2 Defining DEMVEA SIScciiiuiiiieiiiiiie ettt e e 71
B.2.3 SUMIMAIY ...ttt e e e e e e et e et e e e e e sen b e be e e e e e e e e sensssaneeaens 72
5.3 THE DATA SECHON ...ceiitiiiie ittt ettt e e ettt e e e st e e e saae e e e snneeeesannneeas 73
5.4 Set Looping FUNCLONSccoiieeee et e e e e e e e e 75
5.4.1 @SUM Set Looping FUNCHONcoiiiiiiiiiie e 76
5.4.2 @MIN and @MAX Set Looping FUNCHONSccceiiiiiiiiiiieeee e 77
5.4.3 @FOR Set Looping FUNCHON.........cooiiiiiiiiiie e 78
5.4.4 Nested Set LoOOPING FUNCHONS........coooiiiiiiiiiiie e 79
5.5 Set Based Modeling EXamples..........oooiiiiiiiiiii e 79
5.5.1 Primitive Set EXamPIE.....cooo e 80
5.5.2 Dense Derived Set EXamPIE.........cooiiiiiiiiiiiiiiiee e 83
5.5.3 Sparse Derived Set Example - Explicit Listcccooveiiiiiiiiiii e, 85
5.5.4 A Sparse Derived Set Using a Membership Filter..........ccoooiiiiiiiiiiii e 90

5.6 Domain FUNCctions for Variablesccoooiiiiiuieeiiieeeee e 94

Table of Contents v

5.7 Spreadsheets and LINGOoooiiiiiiiiiiiece e e e e e 94
5.8 SUMIMAIY ..ottt e e e e e e e e e e e e e e e st eaeeeeeeesesnantssaeeaaaeeeanes 98
5.9 PrODIBMS. ... e 98
6 Product Mix Problems ..ot s ssssssane s 99
L 200 T 1 Yo 18 o3 1T o SR 99
L2 = 12] o [SO 100
6.3 Process Selection Product Mix Problems ... 103
L 0] o] =T 3 1 SO 108
7 Covering, Staffing & Cutting Stock Models...........cccocviriniiiiinnn e, 111
7.1 INEFOTAUCTHION L.ttt e na e e e s 111
7.1.1 Staffing Problems..........oeiiiiec e 112
7.1.2 Example: Northeast Tollway Staffing Problems.............cccccoo i, 112
7.1.3 Additional Staff Scheduling Features............cooiiii e, 114
7.2 Cutting Stock and Pattern Selection.............ccoooiiiii e 115
7.2.1 Example: Cooldot Cutting Stock Problem............cccccoiiiiiiiee e, 116
7.2.2 Formulation and Solution of Cooldot ... 117
7.2.3 Generalizations of the Cutting Stock Problem ..., 121
7.2.4 Two-Dimensional Cutting Stock Problemscccooiiiiiiiee e, 123
7.3 Crew Scheduling ProbIEMSoouiiiiiiiie et 123
7.3.1 Example: Sayre-Priors Crew Scheduling..........cocccoviiiiiiiiiiiiiee e 124
7.3.2 Solving the Sayre/Priors Crew Scheduling Problemccccccovviiiiiniienciee, 126
7.3.3 Additional Practical Detailscccooiiiiiiiiiiiiic e 128
7.4 A Generic Covering/Partitioning/Packing Modelc..ccoooiiiiiiiiiec e, 129
7.5 PrODIBMS. ... 131
8 Networks, Distribution and PERT/CPM..........cciiiiiiiimiciirnrssssssssesss s ssssssssss e nessssnsnes 141
8.1 What's Special About Network MOdelsooeiiiiiiiiiii e 141
8.1.1 SPECIAI CASES ...eiiiieieieiiee ettt e e e e e e e e e e e e 144
8.2 PERT/CPM Networks @and LP.........ccooiiiiiiiee et 144
8.3 Activity-on-Arc vs. Activity-on-Node Network Diagrams...........cooccoiiiiiiiiiiiiiiiiieenenenn. 149
8.4 Crashing of Project NEtWOIKScoiiiiiiiieiiiiie et 150
8.4.1 The Cost and Value of Crashing..........cc.cooiiiiiiiiiiiiiie e 151
8.4.2 The Cost of Crashing an ACtiVItYcoooiciiiiiiiii e 151
8.4.3 The Value of Crashing @ Project...........ccoocuiiiiiiiei i 151
8.4.4 Formulation of the Crashing Problemccccooiiiiii e, 152
8.5 Resource Constraints in Project Scheduling ... 155
8.6 Path FOrmMUIAtIONSeeiiiiiiiee e e e e e e e e as 157
G I == 1] o] = USSR 158
8.7 Path Formulations of Undirected NetWorks............oooiiiiiiiiiiiiiiieee e 159
At T =1] o] = SRR 160
8.8 Double Entry Bookkeeping: A Network Model of the Firm ... 162
8.9 Extensions of Network LP MOEIS..........c.ooeiiiiiiie i 163
8.9.1 Multicommodity NetWork FIOWScoooiiiiii e 164
8.9.2 Reducing the Size of Multicommodity Problemsccccoocvieiiiiii e, 165

8.9.3 Multicommodity FIOW EXamMPIEoooiiiiiiiiiiieee e 165

vi Table of Contents

8.9.4 Fleet Routing and ASSIGNMENT.........cooiiiiiiiiiiiiiicee e 168
8.9.5 Fleet ASSIGNMENToeiiiiiii e 171
8.9.6 Leontief FIOW MOEIScccueiiiiiiiiiie s 176
8.9.7 Activity/Resource Diagrams.........c.uuiiiiiiiiiiiiiee ettt 178
8.9.8 SPANNING TIEES e e e 180
RS IR IS Y (=11 U= I (== SRR 182
8.10 NONINEAI NEWOIKSeeeiiiiee et ennneeeeeeas 186
< TRt I I]] [T o 4L SRR 188
9 Multi-period Planning Problems ... 197
12 20 Lo To 18 o3 1T o I USRS 197
9.2 A Dynamic Production Problem..............cooiiiiiiiic e 199
9.2.1 FOPMUIBLION ...ttt 199
9.2.2 CONSIAINES ...ttt 200
9.2.3 Representing Absolute ValUues...........oouuiiiiiiiiiiii e 202
9.3 Multi-period Financial MOAEIS...........coooiiiiiiiiee e 203
9.3.1 Example: Cash Flow MatChingccooouiiiiiiiiii e 203
9.4 Financial Planning Models with Tax Considerations..............ccccevviieiiiiie e 207
9.4.1 Formulation and Solution of the WSDM Problem............ccccooiiiiiiie 208
9.4.2 Interpretation of the Dual PriCesoooi i 209
9.5 Present Value VS. LP ANAIYSIS.........uiiiiiiii e 210
9.6 Accounting fOr INCOME TAXEScciiuiiiieiiiiie et e eree e 211
9.7 Dynamic or Multi-period NetwoOrks...........ooouiiiiiii e 214
9.8 ENA EffECES ..o s 216
9.8.1 Perishability/Shelf Life CONStraintsccccvviiiieiiiiieee e 217
9.8.2 Startup and Shutdown CoOStSeeiiiiiiiiice e 217
9.9 Non-optimality of Cyclic Solutions to Cyclic Problemscccccvviiiieiiiiicciiieeeeeen 217
1S TR L0 o] o] [T o LSRR 223
10 Blending of Input Materialsccoociiiiiiiincii 227
O 2R 1 Yo [e 1 o o S 227
10.2 The Structure of Blending Problems ... 228
10.2.1 Example: The Pittsburgh Steel Company Blending Problem...............ccccc......... 229
10.2.2 Formulation and Solution of the Pittsburgh Steel Blending Problem.................. 230
10.3 A Blending Problem within a Product Mix Problem.............cccccccooiiiin 232
10.3.1 FOrMUIBLION ... e 233
10.3.2 Representing Two-sided Constraints...........cccceeeeeiiiiiiiiiiiiee e 234
10.4 Proper Choice of Alternate Interpretations of Quality Requirements....................... 237
10.5 How to Compute Blended QUAltYcooeiiiiiiiiiiiii e 239
ORI I = 12] o) = PR 240
10.5.2 Generalized MEaN......... ..ot a e 240
10.6 Interpretation of Dual Prices for Blending Constraintsccccooiieiiiiiiennns 242
10.7 Fractional or Hyperbolic Programmingcceeiiiiiieiiiiiee e 242
10.8 Multi-Level Blending: Pooling Problems...............cooii i 243

OIS I 0] o] =T o TN 248

Table of Contents vii

11 Formulating and Solving Integer Programs..........cccccveceoerrrssmeesssssseesssssssesssssssessssnns 261
T4 INEFOAUCTION ..t enr e e 261
11.1.1 Types Of VaAriabIESooeiiiiiiiieee e 261
11.2 Exploiting the IP Capability: Standard Applications............cccoeeeeeiiiii i 262
11.2.1 Binary Representation of General Integer Variablesccccccoviiiiniieenne 262
11.2.2 Minimum Batch Size Constraints............coooiiiiiiii e 262
11.2.3 Fixed Charge Problems ... 263
11.2.4 The Simple Plant Location Problem ... 263
11.2.5 The Capacitated Plant Location Problem (CPL)..........cccccoiiiiiiiiiiiiieeiiee e 265
11.2.6 Modeling Alternatives with the Scenario Approachccccccccveeviceeeeecieee e 267
11.2.7 Linearizing a Piecewise Linear FUNCLONcccoiiiiiii 268
11.2.8 Converting to Separable FUNCLONSc.vvviiiiiiii e, 271
11.3 Outline of Integer Programming Methodsccoooiiiiiiiiiiiiie e 272
11.4 Computational Difficulty of Integer Programs............ccoociiiieiieiiiicciieee e 274
11.4.1 NP-Complete Problemscoo e 275
11.5 Problems with Naturally Integer Solutions and the Prayer Algorithm........................ 275
11.5.1 Network LPS ReVISItEdouuiiiiiiii e 276
11.5.2 Integral Leontief ConStraints...........cooiiiiiiiiii e 276
11.5.3 Example: A One-Period MRP Problem...........ccccooiiiiiiee e 277
11.5.4 Transformations to Naturally Integer Formulationscccceiiiiiiinine 279
11.6 The Assignment Problem and Related Sequencing and Routing Problems............. 281
11.6.1 Example: The Assignment Problem ... 281
11.6.2 The Traveling Salesperson Problemccccooiiiiiiiiiiiii e 283
11.6.3 Capacitated Multiple TSP/Vehicle Routing Problems.............ccccooeviiiiiiiinnnee, 289
11.6.4 Minimum SPanNiNg TrEE........coiiiiiieiiie et e e e a e e e e e enannes 293
11.6.5 The Linear Ordering Problemcoooiiiiiiiiiiie e 293
11.6.6 Quadratic Assignment Problem ... 296
11.7 Problems of Grouping, Matching, Covering, Partitioning, and Packing 299
11.7.1 Formulation as an Assignment Problem............cocooiiiiii e 300
11.7.2 Matching Problems, Groups of Siz€ TWOccooiiiiiiiiiiee e 301
11.7.3 Groups with More Than TwWo Members ... 303
11.7.4 Groups with a Variable Number of Members, Assignment Version 307
11.7.5 Groups with A Variable Number of Members, Packing Version......................... 308
11.7.6 Groups with A Variable Number of Members, Cutting Stock Problem................ 311
11.7.7 Groups with A Variable Number of Members, Vehicle Routing..............ccc......... 315
11.8 Linearizing Products of Variables.............ccooociiiiiiiii et 320
11.8.1 Example: Bundling of Products.............ccooiiiiiiiiiie e 320
11.9 Representing Logical ConditioNS...........oueiiiiiiiiiiiiiiee e 323
P O 0] o] =T 31 P 324
12 Decision making Under Uncertainty and Stochastic Programs..........c.cccccocvceeiiinens 335
P70 10 Yo 11 o 1o o S 335
12.2 Identifying Sources of Uncertainty.........cc.oooiiiiiiiiiiiii e 335
12.3 The Scenario APPrOACH.........ooiii i e e e 336
12.4 A More Complicated Two-Period Planning Problem............cccccoiiiiiiiiiiiee e 338
12.4.1 The Warm Winter SOIUION..........coouiiiiii e 340

12.4.2 The Cold WiInter SOIULIONoiiiiiieeeee e s 340

viii Table of Contents

12.4.3 The Unconditional SOIUtIONcceiiiiiiiiiiiiee e 341
12.5 Expected Value of Perfect Information (EVPI)ooooiiiiiiiie e 344
12.6 Expected Value of Modeling Uncertaintyccccoeeeiiiiiiiiiieeie e 345

12.6.1 Certainty EQUIVAIENCEoueiiiiie e 345
P A 2 U] QN V= = (o) o 346

12.7.1 DOWNSIAE RISK .coieeeeiiiie et e e e e e e e e e nnnes 347

L - 14 1o [SR 348
12.8 ChOOSING SCENAIOSueeiiiiiiiiee ettt ettt e et e e et e e s abeeee e 350

12.8.1 Matching Scenario Statistics to Targets ... 351

12.8.2 Generating Scenarios with a Specified Covariance Structure..............ccccoee...... 352

12.8.3 Generating a Suitable Z MatriXcocoiiiiiiie e 353

12.8.4 EXAMPIE ...t e e e e e e e r e e e e e e e nnnraes 354

12.8.5 Converting Multi-Stage Problems to Two-Stage Problemscccccccoevvnnnneee. 355
12.9 Decisions Under Uncertainty with More than Two Periods............ccccoceveveiiiiiiininne. 355

12.9.1 Dynamic Programming and Financial Option Modelsccccoooiiiiiinennnne 356

12.9.2 Binomial Tree Models of Interest Rates.........cccccoeeviiiiiiiiiiie e, 357

12.9.3 Binomial Tree Models of Foreign Exchange Ratescccccceiviiiiiiiec 361
12.10 Decisions Under Uncertainty with an Infinite Number of Periods.............c.ccccee. 363

12.10.1 Example: Cash Balance Managementccocceiiiiiiiiiniiiee e 365
12.11 Chance-Constrained Programsooueiii i 368
L A o (o] o] =T o o PR P 369

13 Portfolio Optimization.........c e 37
13T INEFOAUCTION ...t ene e e 371
13.2 The Markowitz Mean/Variance Portfolio Model.............cccocooiiiiiiiinicice e 371

B T B = 11] o] [TSR 372
13.3 Dualing Objectives: Efficient Frontier and Parametric Analysiscccccceeevviinnnneeen. 375

13.3.1 Portfolios with @ RiSK-Free ASSet.........cooiiiiiiiiii e 375

13.3.2 The Sharpe Ratio........c..eiiiiiii e 378
13.4 Important Variations of the Portfolio Model ... 379

13.4.1 Portfolios with Transaction COStScooiiiiiiiiie e 380

TB.4.2 EXAMPIE . ———— 380

13.4.3 POrtfolios With TAXES......coiiiiiiiieiiiiie et s a e 382

13.4.4 Factors Model for Simplifying the Covariance Structureccccceveiieeeenee. 384

13.4.5 Example of the Factor Model............cooooiiiiiiiiiii e 385

13.4.6 Scenario Model for Representing Uncertaintycccccceeeeeiiiiiieeee e 386

13.4.7 Example: Scenario Model for Representing Uncertainty.............ccccceeevivnnnnneen. 387
13.5 Measures of Risk other than Variance ... 389

13.5.1 Maximizing the Minimum Returnccooiiii e 390

13.5.2VaAIUE @t RISKcciiiiieee ittt ettt eenreas 391

13.5.3 EXample Of VAR .. e e e 392
13.6 Scenario Model and Minimizing Downside RisK............cccccciiiiiiiiiieeees 393

13.6.1 Semi-variance and Downside RiSK ... 394

13.6.2 Downside Risk and MAD ... 396

13.6.3 Scenarios Based Directly Upon a Covariance MatriX...........ccccceevvvieeeincneneennne 396
13.7 Hedging, Matching and Program Tradingcccccoriiiiiiiiiiiie e 398

13.7.1 Portfolio HEAQING ... e e e 398

Table of Contents ix

13.7.2 Portfolio Matching, Tracking, and Program Tradingcccceccvviveeeeeeeeiccinnnen, 398
13.8 Methods for Constructing Benchmark Portfolios............cccoveeevieiiiiicciieeee e 399
13.8.1 Scenario Approach to Benchmark Portfolios...........ccccvvveviiiiiicciiieee e 402
13.8.2 Efficient Benchmark Portfolios...........oooiiiiiiiiii e 404
13.8.3 Efficient Formulation of Portfolio Problems.............ccccoiiiiiiiiic e 405
13.9 Cholesky Factorization for Quadratic Programs.............ccccoiiiiiiiiiei e 407
RS TR L = 0] o] =T o o 409
14 Multiple Criteria and Goal Programmingccccoucvcmrinnienniisnsnisss s s ssssss s ssssnes 411
{300 g o [§ e 1T o TP 411
14.1.1 Alternate Optima and Multicriteriacccccccii i, 412
14.2 Approaches to Multi-criteria Problemsceeeeiiiiiiiiii e 412
14.2.1 Pareto Optimal Solutions and Multiple Criteria............cccccveeeeiieciiieeee e, 412
14.2.2 Utility FUNCtion APProachcc.euiiiiiiie ettt 412
14.2.3 Trade-Off CUIVES ...ttt e e e e e e e e e e e e e e s nnneeees 413
14.2.4 Example: Ad Lib Marketingcocueiiiiiiiiee e 413
14.3 Goal Programming and Soft Constraints.............coiiiiiiiiiiii e 416
14.3.1 Example: Secondary Criterion to Choose Among Alternate Optima.................. 417
14.3.2 Preemptive/Lexico Goal Programmingcecoiueeieiniiine e 419
14.4 Minimizing the Maximum Hurt, or Unordered Lexico Minimization 422
T4 4.1 EXAMPIE .. ———— 423
14.4.2 Finding a Unique Solution Minimizing the Maximum............ccccccovviiveeiiceee e, 423
14.5 Identifying Points on the Efficient Frontier............cccvei i 428
14.5.1 Efficient Points, More-is-Better Case...........ccccceiiiiiiiiniiiie e 428
14.5.2 Efficient Points, Less-is-Better Caseoocoovieiiiiii i 430
14.5.3 Efficient Points, the Mixed Casecccuiiiiiiiii i 432
14.6 Comparing Performance with Data Envelopment Analysis............cccccoviiiieiiiiiieenns 433
A o (o] o] =1 3T 438
15 Economic Equilibria and Pricing........ccccccciiiiinnn s 441
15.1 What is an EQUIlIDrIUM? ... 441
15.2 A Simple Simultaneous Price/Production Decision............ccccccoeeeiiiiiiieeeeeec e, 442
15.3 Representing Supply & Demand Curves in LPS...........ccccceiiiiiiieiiiiiie e 443
15.4 Auctions as EcConomic EQUILIDIIA ..., 447
15.5 Multi-Product Pricing Problemsoooiiiiiiiiiii e 451
15.6 General Equilibrium Models of An ECONOMYooooiiiiiiiiiiiiiiee e 455
15.7 Transportation EQUIlIDra............ccociiiiiiii e 457
15.7.1 User Equilibrium vs. Social Optimumcccciiiiiiiiiiiee e 461
15.8 Equilibria in Networks as Optimization Problems..............cccoiiiiiiiie e 463
15.8.1 Equilibrium Network FIOWS.........ooiiiiiiiiiiee e 465
S TR I (0] o] =1 oo T S 467
16 Game Theory and Cost Allocationccccciiiiiiniinir 471
T6.1 INTrOAUCHION ...t e e e e e e e e e e e e e eeneneeeas 471
16.2 TWO-PEIrSON GaAMES.....coueiiieiiiiiie ettt e st e e et e e e e naae e e snnnaeee s 471
16.2.1 The Minimax SIrategycocuuiieiiiiee e e 472

16.3 Two-Person Non-Constant SUM GamesS...........couuuueiiiiiiiiiiiieeeeeeeeeeee e 474

x Table of Contents

16.3.1 Prisoner's DIlemMma........coooiiiiiiiiii e 475
16.3.2 ChoOoSING @ STrat@gyeeeiiieiiiiiiiiee e e e e e e 476
16.3.3 Bimatrix Games with Several Solutions...........cocceviiiiiii 479
16.4 Nonconstant-Sum Games Involving Two or More Playersccccccoiiiiiiiienenns 481
16.4.1 Shapley ValUecooo i e 483
16.5 The Stable Marriage/Assignment Problem ... 483
16.5.1 The Stable Room-mate Matching Problem............ccccoiiiiiniieeee 487
SIS (0] o] =1 g T S 490
17 Inventory, Production, and Supply Chain Managementcccccciniiiennnisinnninianns 493
L% 1 Yo 18 e 1T o PR 493
17.2 One Period News Vendor Problem ... 493
17.2.1 Analysis Of the DECISION..........ccicciiiiiiie e e e 494
17.3 MUlti-Stage NEWS VENUOTcooiiiiiieeee ettt a e e 496
17.3.1 Ordering with @ Backup Option ... 499
17.3.2 Safety LOSIZE ..o 501
17.3.3 Multiproduct Inventories with Substitutioncccooiiiiii 502
17.4 Economic Order QUANTILYcooiiiiiiiiiiee e 506
LA T I L= TR 1Y oo 1= RS 507
17.5.1 Distribution of Lead Time Demand ... 507
17.5.2 Cost ANAlYSIS OF QI ..ottt 507
17.6 Base Stock INVENTOry POLICYccoiuiiiiiiiiii et 512
17.6.1 Base Stock — PeriodiC REVIEWcccuiiiiiiiiiie et 513
17 8.2 POIICY ..ccii ettt e e e e e e e e e e e e e e e e a e raaaeeeanees 513
T7.68.3 ANAIYSIS ... e e e e e e e e e e s aaaeeeaeannraees 513
17.6.4 Base Stock — ContinUOUS REVIEWc.cooiiiiiiiiiiiiicic e 515
17.7 Multi-Echelon Base Stock, the METRIC Model...........coovvimiiiiiieiiieieeee e, 515
17.8 DC With Holdback Inventory/Capacitycccceeeiiieeeiiiiiee i 519
17.9 Multiproduct, Constrained Dynamic Lot Size Problemsccccooieiiiiieiiiiienens 521
e T [T oYU = = S 522
S I = 10 o [SR 523
17.9.3 EXEENSIONS.eeeeieeie ettt e e e e et e e e e e e e e aeaeeeeeeaeeeaannnes 528
L L o (o] o] =T o o TR 529
18 Design & Implementation of Service and Queuing Systems...........cccoecnininnnieniinnn 531
181 INEFOAUCTION ... 531
18.2 Forecasting Demand for SEIVICEScoiiiiiiiiiiiiiiiiie e 531
18.3 Waiting Line or QUeUINg ThEOIYcooi i 532
18.3.1 AITIVAl PrOCESS ..coiiiiiiieieiie ettt e e et e e e e e e e s et eeeeaeeeannnnnes 533
18.3.2 QUEUE DISCIPINEeiiiiiiiii et 534
18.3.3 SEIVICE PrOCESS ...ttt e e e e e e e e e e e e e nnnnes 534
18.3.4 Performance Measures for Service SysStems ..o 534
18.3.5 StAtIONAITLYeeeiiieiee e s 535
18.3.6 A Handy Little FOrmMuUIa ..o 535
T8.3.7 EXAMPIE . ———— 535
18.4 Solved QUEUING MOTEISuiiiiiiiiie e 536

18.4.1 Number of Outbound WATS lines via Erlang Loss Model.............ccc..coevnnnnneen. 537

Table of Contents xi

18.4.2 Evaluating Service Centralization via the Erlang C Modelccccccoevvnnnneen. 538
18.4.3 A Mixed Service/lnventory System via the M/G/co Modelccccoeeiiiiiiiennne 539
18.4.4 Optimal Number of Repairmen via the Finite Source Model.cccuunnee. 540
18.4.5 Selection of a Processor Type via the M/G/1 Modelccoocciivieeeeiiiiiicine, 541
18.4.6 Multiple Server Systems with General Distribution, M/G/c & G/G/c................... 543
18.5 Critical Assumptions and Their Validity ..o, 545
18.6 NetwOrks Of QUEUESeiiiiiie ettt e et e et e e eee e e enneeenee 545
18.7 DeSIGNEr QUEBUES ...t e et e e e e e e et e et e e e e e s e nneeeeeeaaeeeaaannnnees 547
18.7.1 Example: Positive but Finite Waiting Space Systemcccccciviiiiiiiinenn 547
18.7.2 Constant Service Time. Infinite Source. No Limit on Line Length....................... 550
18.7.3 Example Effect of Service Time Distribution................ccccccoiiiiiii 550
LR TR < I md (0] o] =1 4o T PR 553
19 Design & Implementation of Optimization-Based Decision Support Systems........ 555
19.1 General Structure of the Modeling ProCesscocoviiiiiiiiiiiieie e 555
19.1.1 Developing the Model: Detail and Maintenance.............cccccccooveiiieieee e, 556
19.2 Verification and Validationeuviiiiiio oot 556
19.2.1 Appropriate Level of Detail and Validation.............ccccoooiiiiiiee 556
19.2.2 When Your Model & the RW Disagree, Betonthe RW...........cccooiiiiiinen 557
19.2.3 Should We Behave Non-Optimally? ... 558
19.3 Separation of Data and System Structure ... 558
19.3.1 SYSIEM STTUCIUIE ..o s 559
19.4 Marketing the MOEl ... 559
LS TR I =T 0T 7 559
19.4.2 Report Generation in LINGOooiiiiiiiiie e 563
19.5 Reducing MOEl SIZE........oeeeiiiiiiieeeee e e 565
19.5.1 Reduction by AQgregation.............uuueiiie oo 566
19.5.2 Reducing the Number of NONZEroescccciiiiiiiiiiiiii e 569
19.5.3 Reducing the Number of Nonzeroes in Covering Problems............ccccccoeeenee. 569
19.6 On-the-Fly Column Generationoocuiiiiiiiiii e 571
19.6.1 Example of Column Generation Applied to a Cutting Stock Problem 572
19.6.2 Column Generation and Integer Programming..........c.ccccceeeriiienenniiene e 576
19.6.3 ROW GENEIatiONttt e e e e e e e e e e e 576

B TN (0] o] =1 o T TP 577
=] =T = o 1= 579

xii Table of Contents

Preface

This book shows how to use the power of optimization, sometimes known as mathematical
programming, to solve problems of business, industry, and government. The intended audience is
students of business, managers, and engineers. The major technical skill required of the reader is to be
comfortable with the idea of using a symbol to represent an unknown quantity.

This book is one of the most comprehensive expositions available on how to apply optimization
models to important business and industrial problems. If you do not find your favorite business
application explicitly listed in the table of contents, check the very comprehensive index at the back of
the book.

There are essentially three kinds of chapters in the book:

1. introduction to modeling (chapters 1, 3, 4, and 19),
2. solving models with a computer (chapters 2, 5), and
3. application specific illustration of modeling with LINGO (chapters 6-18).

Readers completely new to optimization should read at least the first five chapters. Readers
familiar with optimization, but unfamiliar with LINGO, should read at least chapters 2 and 5. Readers
familiar with optimization and familiar with at least the concepts of a modeling language can probably
skip to chapters 6-18. One can pick and choose from these chapters on applications. There is no strong
sequential ordering among chapters 6-18, other than that the easier topics are in the earlier chapters.
Among these application chapters, chapters 11 (on integer programming), and 12 (on stochastic
programming) are worthy of special mention. They cover two computationally intensive techniques of
fairly general applicability. As computers continue to grow more powerful, integer programming and
stochastic programming will become even more valuable. Chapter 19 is a concluding chapter on
implementing optimization models. It requires some familiarity with the details of models, as
illustrated in the preceding chapters.

There is a natural progression of skills needed as technology develops. For optimization, it has
been:

1) Ability to solve the models: 1950’s
2) Ability to formulate optimization models: 1970’s
3) Ability to use turnkey or template models: 1990’s onward.

This book has no material on the mathematics of solving optimization models. For users who are
discovering new applications, there is a substantial amount of material on the formulation of
optimization models. For the modern “two minute” manager, there is a big collection of
“off-the-shelf”, ready-to-apply template models throughout the book.

Users familiar with the text Optimization Modeling with LINDO will notice much of the material
in this current book is based on material in the LINDO book. The major differences are due to the two
very important capabilities of LINGO: the ability to solve nonlinear models, and the availability of the
set or vector notation for compactly representing large models.

Acknowledgments

This book has benefited from comments and corrections from Egon Balas, Robert Bosch, Angel G.
Coca Balta, Sergio Chayet, Richard Darst, Daniel Davidson, Robert Dell, Hamilton Emmons, Saul
Gass, Tom Knowles, Milt Gutterman, Changpyo David Hong, Kipp Martin, Syam Menon, Raul

xiii

xiv Preface

Negro, David Phillips, J. Pye, Fritz Raffensperger, Rick Rosenthal, James Schmidt, Paul Schweitzer,
Shuichi Shinmura, Rob Stubbs, David Tulett, Richard Wendell, Mark Wiley, and Gene Woolsey and
his students. The outstanding software expertise and sage advice of Kevin Cunningham was crucial.
The production of this book (from editing and formatting to printing) was ably managed by Sarah
Snider, Hanzade Izmit, Srinnath Tumu and Jane Rees.

What Is Optimization?

1.1 Introduction

Optimization, or constrained optimization, or mathematical programming, is a mathematical procedure
for determining optimal allocation of scarce resources. Optimization, and its most popular special
form, Linear Programming (LP), has found practical application in almost all facets of business, from
advertising to production planning. Transportation and aggregate production planning problems are the
most typical objects of LP analysis. The petroleum industry was an early intensive user of LP for
solving fuel blending problems.

It is important for the reader to appreciate at the outset that the “programming” in Mathematical
Programming is of a different flavor than the “programming” in Computer Programming. In the
former case, it means to plan and organize (as in “Get with the program!”). In the latter case, it means
to write instructions for performing calculations. Although aptitude in one suggests aptitude in the
other, training in the one kind of programming has very little direct relevance to the other.

For most optimization problems, one can think of there being two important classes of objects.
The first of these is /imited resources, such as land, plant capacity, and sales force size. The second is
activities, such as “produce low carbon steel,” “produce stainless steel,” and “produce high carbon
steel.” Each activity consumes or possibly contributes additional amounts of the resources. The
problem is to determine the best combination of activity levels that does not use more resources than
are actually available. We can best gain the flavor of LP by using a simple example.

1.2 A Simple Product Mix Problem

The Enginola Television Company produces two types of TV sets, the “Astro” and the “Cosmo”.
There are two production lines, one for each set. The Astro production line has a capacity of 60 sets
per day, whereas the capacity for the Cosmo production line is only 50 sets per day. The labor
requirements for the Astro set is 1 person-hour, whereas the Cosmo requires a full 2 person-hours of
labor. Presently, there is a maximum of 120 man-hours of labor per day that can be assigned to
production of the two types of sets. If the profit contributions are $20 and $30 for each Astro and
Cosmo set, respectively, what should be the daily production?

2 Chapter 1 What is Optimization?

A structured, but verbal, description of what we want to do is:

Maximize Profit contribution

subjectto Astro production less-than-or-equal-to Astro capacity,
Cosmo production less-than-or-equal-to Cosmo capacity,
Labor used less-than-or-equal-to labor availability.

Until there is a significant improvement in artificial intelligence/expert system software, we will
need to be more precise if we wish to get some help in solving our problem. We can be more precise if
we define:

A = units of Astros to be produced per day,
C = units of Cosmos to be produced per day.

Further, we decide to measure:

Profit contribution in dollars,

Astro usage in units of Astros produced,
Cosmo usage in units of Cosmos produced, and
Labor in person-hours.

Then, a precise statement of our problem is:

Maximize 204 +30C (Dollars)
subject to A < 60 (Astro capacity)
C <50 (Cosmo capacity)

A + 2C <120 (Labor in person-hours)

The first line, “Maximize 204+30C”, is known as the objective function. The remaining three lines
are known as constraints. Most optimization programs, sometimes called “solvers”, assume all
variables are constrained to be nonnegative, so stating the constraints 4 > 0 and C > 0 is unnecessary.

Using the terminology of resources and activities, there are three resources: Astro capacity,
Cosmo capacity, and labor capacity. The activities are Astro and Cosmo production. It is generally true
that, with each constraint in an optimization model, one can associate some resource. For each decision
variable, there is frequently a corresponding physical activity.

1.2.1 Graphical Analysis

The Enginola problem is represented graphically in Figure 1.1. The feasible production combinations
are the points in the lower left enclosed by the five solid lines. We want to find the point in the feasible
region that gives the highest profit.

To gain some idea of where the maximum profit point lies, let’s consider some possibilities. The
point 4 = C =0 is feasible, but it does not help us out much with respect to profits. If we spoke with
the manager of the Cosmo line, the response might be: “The Cosmo is our more profitable product.
Therefore, we should make as many of it as possible, namely 50, and be satisfied with the profit
contribution of 30 x 50 = $1500.”

What is Optimization? Chapter 1

Figure 1.1 Feasible Region for Enginola

Cosmo Capacity
C=50

C

o 40

s

m 30 - Feasible

o Production

s Combinations
20 [
10 +

1 1 | 1 1

60 Astro Capacity
\ A =60 ™~
50

Labor Capacity
A+2C=120

1 L 1 1 1 !

10 20 30 40 50

Astros

You, the thoughtful reader, might observe there are many combinations of 4 and C, other than just
A =0 and C = 50, that achieve $1500 of profit. Indeed, if you plot the line 204 + 30C = 1500 and add
it to the graph, then you get Figure 1.2. Any point on the dotted line segment achieves a profit of
$1500. Any line of constant profit such as that is called an iso-profit line (or iso-cost in the case of a

cost minimization problem).

If we next talk with the manager of the Astro line, the response might be: “If you produce 50
Cosmos, you still have enough labor to produce 20 Astros. This would give a profit of
30 x 50 + 20 x 20 = $1900. That is certainly a respectable profit. Why don’t we call it a day and go

home?”

60 70 80 90 100 110 120

Figure 1.2 Enginola With "Profit = 1500"

N
o
T
/

20 A+ 30 C=1500

N
N

N
N

1 1 1 L 1

0 Il 1 | | |
10 20 30 40 50
Astros

60 70 80 90 100 110 120

4 Chapter 1 What is Optimization?

Our ever-alert reader might again observe that there are many ways of making $1900 of profit. If
you plot the line 204 + 30C = 1900 and add it to the graph, then you get Figure 1.3. Any point on the
higher rightmost dotted line segment achieves a profit of $1900.

Figure 1.3 Enginola with "Profit = 1900"
70 |

60
50 T
40

30 20 A +30C=1900

o3 nwo0

|)

10 - AN

1 1 I 1 I L LN 1 1
0 10 20 30 40 50 60 70 80 90 100 110 120

Astros

Now, our ever-perceptive reader makes a leap of insight. As we increase our profit aspirations, the
dotted line representing all points that achieve a given profit simply shifts in a parallel fashion. Why
not shift it as far as possible for as long as the line contains a feasible point? This last and best feasible
point is 4 = 60, C = 30. It lies on the line 204 + 30C =2100. This is illustrated in Figure 1.4. Notice,
even though the profit contribution per unit is higher for Cosmo, we did not make as many (30) as we
feasibly could have made (50). Intuitively, this is an optimal solution and, in fact, it is. The graphical
analysis of this small problem helps understand what is going on when we analyze larger problems.

Figure 1.4 Enginola with "Profit = 2100"
70 P

60

40
20A +30C=2100

30

N
N

o3 wnwo0

AN
AN
20 \\\

~ N

10 + NN

~

NERN

L L LS 0N 1 1
10 20 30 40 50 60 70 80 90 100 110 120
Astros

What is Optimization? Chapter1 5

1.3 Linearity
We have now seen one example. We will return to it regularly. This is an example of a linear
mathematical program, or LP for short. Solving linear programs tends to be substantially easier than
solving more general mathematical programs. Therefore, it is worthwhile to dwell for a bit on the
linearity feature.

Linear programming applies directly only to situations in which the effects of the different
activities in which we can engage are linear. For practical purposes, we can think of the linearity
requirement as consisting of three features:

1. Proportionality. The effects of a single variable or activity by itself are proportional
(e.g., doubling the amount of steel purchased will double the dollar cost of steel
purchased).

2. Additivity. The interactions among variables must be additive (e.g., the dollar amount of
sales is the sum of the steel dollar sales, the aluminum dollar sales, etc.; whereas the
amount of electricity used is the sum of that used to produce steel, aluminum, etc).

3. Continuity. The variables must be continuous (i.e., fractional values for the decision
variables, such as 6.38, must be allowed). If both 2 and 3 are feasible values for a
variable, then so is 2.51.

A model that includes the two decision variables “price per unit sold” and “quantity of units sold”
is probably not linear. The proportionality requirement is satisfied. However, the interaction between
the two decision variables is multiplicative rather than additive (i.e., dollar sales = price x quantity,
not price + quantity).

If a supplier gives you quantity discounts on your purchases, then the cost of purchases will not
satisfy the proportionality requirement (e.g., the total cost of the stainless steel purchased may be less
than proportional to the amount purchased).

A model that includes the decision variable “number of floors to build” might satisfy the
proportionality and additivity requirements, but violate the continuity conditions. The recommendation
to build 6.38 floors might be difficult to implement unless one had a designer who was ingenious with
split level designs. Nevertheless, the solution of an LP might recommend such fractional answers.

The possible formulations to which LP is applicable are substantially more general than that
suggested by the example. The objective function may be minimized rather than maximized; the
direction of the constraints may be > rather than <, or even =; and any or all of the parameters (e.g., the
20, 30, 60, 50, 120, 2, or 1) may be negative instead of positive. The principal restriction on the class
of problems that can be analyzed results from the linearity restriction.

Fortunately, as we will see later in the chapters on integer programming and quadratic
programming, there are other ways of accommodating these violations of linearity.

6 Chapter 1 What is Optimization?

Figure 1.5 illustrates some nonlinear functions. For example, the expression X x Y satisfies the
proportionality requirement, but the effects of X and Y are not additive. In the expression X + Y2, the
effects of X and Y are additive, but the effects of each individual variable are not proportional.

Figure 1.5: Nonlinear Relations

X*X + Y*Y =16
’

1.4 Analysis of LP Solutions
When you direct the computer to solve a math program, the possible outcomes are indicated in
Figure 1.6.

For a properly formulated LP, the leftmost path will be taken. The solution procedure will first
attempt to find a feasible solution (i.e., a solution that simultaneously satisfies all constraints, but does
not necessarily maximize the objective function). The rightmost, “No Feasible Solution”, path will be
taken if the formulator has been too demanding. That is, two or more constraints are specified that
cannot be simultaneously satisfied. A simple example is the pair of constraints x <2 and x > 3. The
nonexistence of a feasible solution does not depend upon the objective function. It depends solely upon
the constraints. In practice, the “No Feasible Solution” outcome might occur in a large complicated
problem in which an upper limit was specified on the number of productive hours available and an
unrealistically high demand was placed on the number of units to be produced. An alternative message
to “No Feasible Solution” is “You Can’t Have Your Cake and Eat It Too”.

What is Optimization? Chapter1 7

Figure 1.6 Solution Outcomes

Not Feasible

(Optimal Solution) Unbounded

If a feasible solution has been found, then the procedure attempts to find an optimal solution. If
the “Unbounded Solution” termination occurs, it implies the formulation admits the unrealistic result
that an infinite amount of profit can be made. A more realistic conclusion is that an important
constraint has been omitted or the formulation contains a critical typographical error.

We can solve the Enginola problem in LINGO by typing the following:

MODEL:
MAX = 20*A + 30*C;
A <= 60;
C <= 50;
A + 2*C <= 120;
END

We can solve the problem in the Windows version of LINGO by clicking on the red “bullseye”
icon. We can get the following solution report by clicking on the “X="icon”:

Objective wvalue: 2100.000

Variable Value Reduced Cost
A 60.00000 0.00000
C 30.00000 0.00000
Row Slack or Surplus Dual Price
1 2100.00000 1.00000
2 0.00000 5.00000
3 20.00000 0.00000
4 0.00000 15.00000

The output has three sections, an informative section, a “variables” section, and a “rows” section.
The second two sections are straightforward. The maximum profit solution is to produce 60 Astros and
30 Cosmos for a profit contribution of $2,100. This solution will leave zero slack in row 2 (the
constraint 4 < 60), a slack of 20 in row 3 (the constraint C < 50), and no slack in row 4 (the constraint
A +2C<120). Note 60 +2 x 30 =120.

The third column contains a number of opportunity or marginal cost figures. These are useful
by-products of the computations. The interpretation of these “reduced costs” and “dual prices” is
discussed in the next section. The reduced cost/dual price section is optional and can be turned on or
off by clicking on LINGO | Options | General Solver | Dual Computations | Prices.

8 Chapter 1 What is Optimization?

1.5 Sensitivity Analysis, Reduced Costs, and Dual Prices
Realistic LPs require large amounts of data. Accurate data are expensive to collect, so we will
generally be forced to use data in which we have less than complete confidence. A time-honored adage
in data processing circles is “garbage in, garbage out”. A user of a model should be concerned with
how the recommendations of the model are altered by changes in the input data. Sensitivity analysis is
the term applied to the process of answering this question. Fortunately, an LP solution report provides
supplemental information that is useful in sensitivity analysis. This information falls under two
headings, reduced costs and dual prices.

Sensitivity analysis can reveal which pieces of information should be estimated most carefully.
For example, if it is blatantly obvious that a certain product is unprofitable, then little effort need be
expended in accurately estimating its costs. The first law of modeling is "do not waste time accurately
estimating a parameter if a modest error in the parameter has little effect on the recommended
decision".

1.5.1 Reduced Costs

Associated with each variable in any solution is a quantity known as the reduced cost. If the units of
the objective function are dollars and the units of the variable are gallons, then the units of the reduced
cost are dollars per gallon. The reduced cost of a variable is the amount by which the profit
contribution of the variable must be improved (e.g., by reducing its cost) before the variable in
question would have a positive value in an optimal solution. Obviously, a variable that already appears
in the optimal solution will have a zero reduced cost.

It follows that a second, correct interpretation of the reduced cost is that it is the rate at which the
objective function value will deteriorate if a variable, currently at zero, is arbitrarily forced to increase
a small amount. Suppose the reduced cost of x is $2/gallon. This means, if the profitability of x were
increased by $2/gallon, then 1 unit of x (if 1 unit is a “small change”) could be brought into the
solution without affecting the total profit. Clearly, the total profit would be reduced by $2 if x were
increased by 1.0 without altering its original profit contribution.

1.5.2 Dual Prices

Associated with each constraint is a quantity known as the dual price. If the units of the objective
function are cruzeiros and the units of the constraint in question are kilograms, then the units of the
dual price are cruzeiros per kilogram. The dual price of a constraint is the rate at which the objective
function value will improve as the right-hand side or constant term of the constraint is increased a
small amount.

Different optimization programs may use different sign conventions with regard to the dual prices.
The LINGO computer program uses the convention that a positive dual price means increasing the
right-hand side in question will improve the objective function value. On the other hand, a negative
dual price means an increase in the right-hand side will cause the objective function value to
deteriorate. A zero dual price means changing the right-hand side a small amount will have no effect
on the solution value.

It follows that, under this convention, < constraints will have nonnegative dual prices,
> constraints will have nonpositive dual prices, and = constraints can have dual prices of any sign.
Why?

Understanding Dual Prices. 1t is instructive to analyze the dual prices in the solution to the
Enginola problem. The dual price on the constraint 4 < 60 is $5/unit. At first, one might suspect this
quantity should be $20/unit because, if one more Astro is produced, the simple profit contribution of

What is Optimization? Chapter1 9

this unit is $20. An additional Astro unit will require sacrifices elsewhere, however. Since all of the
labor supply is being used, producing more Astros would require the production of Cosmos to be
reduced in order to free up labor. The labor tradeoff rate for Astros and Cosmos is %.. That is,
producing one more Astro implies reducing Cosmo production by ' of a unit. The net increase in
profits is $20 — (1/2)* $30 = $5, because Cosmos have a profit contribution of $30 per unit.

Now, consider the dual price of $15/hour on the labor constraint. If we have 1 more hour of labor,
it will be used solely to produce more Cosmos. One Cosmo has a profit contribution of $30/unit. Since
1 hour of labor is only sufficient for one half of a Cosmo, the value of the additional hour of labor is
$15.

1.6 Unbounded Formulations

If we forget to include the labor constraint and the constraint on the production of Cosmos, then an
unlimited amount of profit is possible by producing a large number of Cosmos. This is illustrated here:

MAX = 20 * A + 30 * C;
A <= 60;

This generates an error window with the message:

UNBOUNDED SOLUTION

There is nothing to prevent C from being infinitely large. The feasible region is illustrated in
Figure 1.7. In larger problems, there are typically several unbounded variables and it is not as easy to
identify the manner in which the unboundedness arises.

Figure 1.7 Graph of Unbounded Formulation

70

Unbounded

10 20 30 40 5 60 70 8 90 100 110 120
Astros

10 Chapter 1 What is Optimization?

1.7 Infeasible Formulations

An example of an infeasible formulation is obtained if the right-hand side of the labor constraint is
made 190 and its direction is inadvertently reversed. In this case, the most labor that can be used is to
produce 60 Astros and 50 Cosmos for a total labor consumption of 60 + 2 x 50 = 160 hours. The
formulation and attempted solution are:

MAX = (20 * A) + (30 * C);
A <= 60;
C <= 50;

A+ 2 * C >= 190;
A window with the error message:

NO FEASIBLE SOLUTION.

will print. The reports window will generate the following:

Variable Value Reduced Cost
A 60.00000 0.0000000

C 50.00000 0.0000000

Row Slack or Surplus Dual Price

1 2700.000 0.0000000

2 0.0000000 1.000000

3 0.0000000 2.000000

4 -30.00000 -1.000000

This “solution” is infeasible for the labor constraint by the amount of 30 person-hours

(190 - (1 X 60 + 2 x 50)). The dual prices in this case give information helpful in determining how the
infeasibility arose. For example, the +1 associated with row 2 indicates that increasing its right-hand
side by one will decrease the infeasibility by 1. The +2 with row 3 means, if we allowed 1 more unit of
Cosmo production, the infeasibility would decrease by 2 units because each Cosmo uses 2 hours of
labor. The -1 associated with row 4 means that decreasing the right-hand side of the labor constraint by
1 would reduce the infeasibility by 1.

What is Optimization? Chapter1 11

Figure 1.8 illustrates the constraints for this formulation.
Figure 1.8 Graph of Infeasible Formulation

100

A+2C= 190

60 c< 50

50
40

w03 ®nw o0

T

20
A< 60

L 1 | ! I ! ! ! 1 ! 1
10 20 30 40 50 60 70 80 90 100 110 120
Astros

1.8 Multiple Optimal Solutions and Degeneracy

For a given formulation that has a bounded optimal solution, there will be a unique optimum objective
function value. However, there may be several different combinations of decision variable values (and
associated dual prices) that produce this unique optimal value. Such solutions are said to be degenerate
in some sense. In the Enginola problem, for example, suppose the profit contribution of 4 happened to
be $15 rather than $20. The problem and a solution are:

MAX = 15 * A + 30 * C;

A <= 60;

C <= 50;

A+ 2 * C <= 120;

Optimal solution found at step: 1

Objective value: 1800.000

Variable Value Reduced Cost
A 20.00000 0.0000000
C 50.00000 0.0000000

Row Slack or Surplus Dual Price

1 1800.000 1.000000
2 40.00000 0.0000000
3 0.0000000 0.0000000
4 0.0000000 15.00000

12 Chapter 1 What is Optimization?

Figure 1.9 Model with Alternative Optima
70|

nw o3 wnwo0

15A +30 C=1500

10 BN

1 1 | 1 1 1 1 1 AN 1 1
10 20 30 40 50 60 70 80 90 100 110 120
Astros

The feasible region, as well as a “profit = 1500” line, are shown in Figure 1.9. Notice the lines
A+2C=120 and 154 +30C = 1500 are parallel. It should be apparent that any feasible point on the
line A + 2C =120 is optimal.

The particularly observant may have noted in the solution report that the constraint, C <50
(i.e., row 3), has both zero slack and a zero dual price. This suggests the production of Cosmos could
be decreased a small amount without any effect on total profits. Of course, there would have to be a
compensatory increase in the production of Astros. We conclude that there must be an alternate
optimum solution that produces more Astros, but fewer Cosmos. We can discover this solution by
increasing the profitability of Astros ever so slightly. Observe:

MAX = 15.0001 * A + 30 * C;

A <= 60;

C <= 50;

A+ 2 * C <= 120;

Optimal solution found at step: 1

Objective value: 1800.006

Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000

Row Slack or Surplus Dual Price

1 1800.006 1.00000
2 0.0000000 0.1000000E-03
3 20.00000 0.0000000
4 0.0000000 15.00000

As predicted, the profit is still about $1800. However, the production of Cosmos has been
decreased to 30 from 50, whereas there has been an increase in the production of Astros to 60 from 20.

What is Optimization? Chapter1 13

1.8.1 The “Snake Eyes” Condition

Alternate optima may exist only if some row in the solution report has zeroes in both the second and
third columns of the report, a configuration that some applied statisticians call “snake eyes”. That is,
alternate optima may exist only if some variable has both zero value and zero reduced cost, or some
constraint has both zero slack and zero dual price. Mathematicians, with no intent of moral judgment,
refer to such solutions as degenerate.

If there are alternate optima, you may find your computer gives a different solution from that in
the text. However, you should always get the same objective function value.

There are, in fact, two ways in which multiple optimal solutions can occur. For the example in
Figure 1.9, the two optimal solution reports differ only in the values of the so-called primal variables
(i.e., our original decision variables 4, C) and the slack variables in the constraint. There can also be
situations where there are multiple optimal solutions in which only the dual variables differ. Consider
this variation of the Enginola problem in which the capacity of the Cosmo line has been reduced to 30.

The formulation is:

MAX = 20 * A + 30 * C;

A < 60;

'note that < and <= are equivalent;
'in LINGO;

C < 30;

A+ 2 * C < 120;

The corresponding graph of this problem appears in Figure 1.10. An optimal solution is:

Optimal solution found at step: 0
Objective value: 2100.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000
Row Slack or Surplus Dual Price
1 2100.000 1.000000
2 0.0000000 20.00000
3 0.0000000 30.00000
4 0.0000000 0.0000000

Again, notice the “snake eyes” in the solution (i.e., the pair of zeroes in a row of the solution
report). This suggests the capacity of the Cosmo line (the RHS of row 3) could be changed without
changing the objective value. Figure 1.10 illustrates the situation. Three constraints pass through the
point A =60, C=30. Any two of the constraints determine the point. In fact, the constraint
A +2C <120 is mathematically redundant (i.e., it could be dropped without changing the feasible
region).

14 Chapter 1 What is Optimization?

Figure 1.10 Alternate Solutions in Dual Variables

80 NA< 60

70 = /20A+300=2‘IOO

C N
(o]
S
m
(o]
s ,C< 30
\\\
20 - \\\ ,A+2C £120
101 N
\\\
0 1 1 l 1 ! ! 1 1 > 1 1
10 20 30 40 50 60 70 80 90 100 110 120
Astros

If you decrease the RHS of row 3 very slightly, you will get essentially the following solution:

Optimal solution found at step: 0
Objective value: 2100.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000
Row Slack or Surplus Dual Price
1 2100.000 1.000000
2 0.0000000 5.000000
3 0.0000000 0.0000000
4 0.0000000 15.00000

Notice this solution differs from the previous one only in the dual values.

We can now state the following rule: If a solution report has the “snake eyes” feature (i.e., a pair
of zeroes in any row of the report), then there may be an alternate optimal solution that differs either in
the primal variables, the dual variables, or in both. If all the constraints are inequality constraints, then
“snake eyes”, in fact, implies there is an alternate optimal solution. If one or more constraints are
equality constraints, however, then the following example illustrates that “snake eyes” does not imply

there has to be an alternate optimal solution:
MAX = 20 * A;

A <= 60;
Cc = 30;

The only solution is:

Optimal solution found at step:
Objective value:

Variable Value
A 60.000000
C 30.000000
Row Slack or Surplus
1 1200.000
2 0.0000000
3 0.0000000

What is Optimization? Chapter 1

0
1200.000

Reduced Cost
0.0000000
0.0000000

Dual Price
1.000000
20.00000

0.0000000

15

If a solution report exhibits the “snake eyes” configuration, a natural question to ask is: can we
determine from the solution report alone whether the alternate optima are in the primal variables or the
dual variables? The answer is “no”, as the following two related problems illustrate.

Problem D Problem P
MAX = X + Y; MAX = X + Y;
X + Y + 72 <= 1; X + Y + Z <= 1;
X + 2 *Y <= 1; X + 2 * 7 <= 1;

Both problems possess multiple optimal solutions. The ones that can be identified by the standard

simplex solution methods are:

Problem D
OBJECTIVE VALUE
1) 1.00000000
Variable Value Reduced Cost
X 1.000000 0 000000
Y 0.000000 0.000000
Z 0.000000 1.000000
Row Slack or Dual Prices
Surplus
2) 0.000000 1.000000
3) 0.000000 0.000000
Problem D
OBJECTIVE VALUE
1) 1.00000000
Variable Value Reduced Cost
X 1.000000 0.000000
Y 0.000000 1.000000
Z 0.000000 0.000000
Slack or
Row Surplus Dual Prices
2) 0.000000 0.000000
3) 0.000000 1.000000

Solution 1
Problem P

OBJECTIVE VALUE
1) 1.00000000

Variable Value
X 1.000000
Y 0.000000
7 0.000000
Row Slack or

Surplus
2) 0.000000
3) 0.000000

Solution 2
Problem P

OBJECTIVE VALUE
1) 1.00000000

Variable Value
X 0.000000
Y 1.000000
Z 0.000000
Slack or

Row Surplus
2) 0.000000
3) 1.000000

Reduced Cost
0.000000
0.000000
1.000000

Prices

1.000000
0.000000

Reduced Cost
0.000000
0.000000
1.000000

Dual Prices
1.000000
0.000000

16 Chapter 1 What is Optimization?

Notice that:

e Solution 1 is exactly the same for both problems;
e Problem D has multiple optimal solutions in the dual variables (only); while
e Problem P has multiple optimal solutions in the primal variables (only).

Thus, one cannot determine from the solution report alone the kind of alternate optima that might
exist. You can generate Solution 1 by setting the RHS of row 3 and the coefficient of X in the objective
to slightly larger than 1 (e.g., 1.001). Likewise, Solution 2 is generated by setting the RHS of row 3
and the coefficient of X in the objective to slightly less than 1 (e.g., 0.9999).

Some authors refer to a problem that has multiple solutions to the primal variables as dual
degenerate and a problem with multiple solutions in the dual variables as primal degenerate. Other
authors say a problem has multiple optima only if there are multiple optimal solutions for the primal
variables.

1.8.2 Degeneracy and Redundant Constraints

In small examples, degeneracy usually means there are redundant constraints. In general, however,
especially in large problems, degeneracy does not imply there are redundant constraints. The constraint
set below and the corresponding Figure 1.11 illustrate:

2x—y<1
2x—z<1
2y—x<1
2y—z<1
2z—-x<1
2z-y<1

What is Optimization? Chapter1 17

Figure 1.11 Degeneracy but No Redundancy

Y
1
i
2y -Xx <1 \
1
1
1
1
1
1
1
1
1
1
1
1
:
1
1
1
1
1
1
1
1
/)1_ __________________________________ X
/ ’,
2Z2-X <1
/7
/7
’
’
,
/7
7/
’
7/
/7
,
7/
)
y/
’
,
z”

These constraints define a cone with apex or point at x =y =z =1, having six sides. The point
x=y=z=1 is degenerate because it has more than three constraints passing through it. Nevertheless,
none of the constraints are redundant. Notice the point x=0.6, y=0, z=0.5 violates the first
constraint, but satisfies all the others. Therefore, the first constraint is nonredundant. By trying all six
permutations of 0.6, 0, 0.5, you can verify each of the six constraints are nonredundant.

1.9 Nonlinear Models and Global Optimization

Throughout this text the emphasis is on formulating linear programs. Historically nonlinear models
were to be avoided, if possible, for two reasons: a) they take much longer to solve, and b) once
“solved” traditional solvers could only guarantee that you had a locally optimal solution. A solution is
a local optimum if there is no better solution nearby, although there might be a much better solution
some distance away. Traditional nonlinear solvers are like myopic mountain climbers, they can get
you to the top of the nearest peak, but they may not see and get you to the highest peak in the
mountain range. Versions of LINGO from LINGO 8 onward have a global solver option. If you
check the global solver option, then you are guaranteed to get a global optimum, if you let the solver
run long enough. To illustrate, suppose our problem is:

Min = @sin(x) + .5*@abs(x-9.5);
x <= 12;

18 Chapter 1 What is Optimization?

The graph of the function appears in Figure 1.12.

Figure 1.12 A Nonconvex Function:
sin(x)+.5*abs(x-9.5)

sin(x) + .5*abs(x-9.5)

If you apply a traditional nonlinear solver to this model you might get one of three solutions: either x =
0, or x =5.235987, or x = 10.47197. If you check the Global solver option in LINGO, it will report
the solution x = 10.47197 and label it as a global optimum. Be forewarned that the global solver does
not eliminate drawback (a), namely, nonlinear models may take a long time to solve to guaranteed
optimality. Nevertheless, the global solver may give a very good, even optimal, solution very quickly
but then take a long time to prove that there is no other better solution.

1.10 Problems

1. Your firm produces two products, Thyristors (7) and Lozenges (L), that compete for the scarce
resources of your distribution system. For the next planning period, your distribution system has
available 6,000 person-hours. Proper distribution of each T requires 3 hours and each L requires
2 hours. The profit contributions per unit are 40 and 30 for 7 and L, respectively. Product line
considerations dictate that at least 1 7 must be sold for each 2 L’s.

(a) Draw the feasible region and draw the profit line that passes through the optimum point.
(b) By simple common sense arguments, what is the optimal solution?

What is Optimization? Chapter1 19

Graph the following LP problem:

Minimize 4X + 6Y

subjectto 5X+2Y> 12
3X+7Y>13
X>0,Y>0.

In addition, plot the line 4X + 6Y = 18 and indicate the optimum point.

The Volkswagen Company produces two products, the Bug and the SuperBug, which share
production facilities. Raw materials costs are $600 per car for the Bug and $750 per car for the
SuperBug. The Bug requires 4 hours in the foundry/forge area per car; whereas, the SuperBug,
because it uses newer more advanced dies, requires only 2 hours in the foundry/forge. The Bug
requires 2 hours per car in the assembly plant; whereas, the SuperBug, because it is a more
complicated car, requires 3 hours per car in the assembly plant. The available daily capacities in
the two areas are 160 hours in the foundry/forge and 180 hours in the assembly plant. Note, if
there are multiple machines, the total hours available per day may be greater than 24. The selling
price of the Bug at the factory door is $4800. It is $5250 for the SuperBug. It is safe to assume
whatever number of cars are produced by this factory can be sold.

(a) Write the linear program formulation of this problem.

(b) The above description implies the capacities of the two departments (foundry/forge and
assembly) are sunk costs. Reformulate the LP under the conditions that each hour of
foundry/forge time cost $90; whereas, each hour of assembly time cost $60. The
capacities remain as before. Unused capacity has no charge.

The Keyesport Quarry has two different pits from which it obtains rock. The rock is run through a
crusher to produce two products: concrete grade stone and road surface chat. Each ton of rock
from the South pit converts into 0.75 tons of stone and 0.25 tons of chat when crushed. Rock from
the North pit is of different quality. When it is crushed, it produces a “50-50” split of stone and
chat. The Quarry has contracts for 60 tons of stone and 40 tons of chat this planning period. The
cost per ton of extracting and crushing rock from the South pit is 1.6 times as costly as from the
North pit.

(a) What are the decision variables in the problem?
(b) There are two constraints for this problem. State them in words.
(c) Graph the feasible region for this problem.

(d) Draw an appropriate objective function line on the graph and indicate graphically and
numerically the optimal solution.

(e) Suppose all the information given in the problem description is accurate. What additional
information might you wish to know before having confidence in this model?

A problem faced by railroads is of assembling engine sets for particular trains. There are three
important characteristics associated with each engine type, namely, operating cost per hour,
horsepower, and tractive power. Associated with each train (e.g., the Super Chief run from
Chicago to Los Angeles) is a required horsepower and a required tractive power. The horsepower
required depends largely upon the speed required by the run; whereas, the tractive power required
depends largely upon the weight of the train and the steepness of the grades encountered on the
run. For a particular train, the problem is to find that combination of engines that satisfies the
horsepower and tractive power requirements at lowest cost.

20

Chapter 1 What is Optimization?

In particular, consider the Cimarron Special, the train that runs from Omaha to Santa Fe. This
train requires 12,000 horsepower and 50,000 tractive power units. Two engine types, the GM-I
and the GM-II, are available for pulling this train. The GM-I has 2,000 horsepower,
10,000 tractive power units, and its variable operating costs are $150 per hour. The GM-II has
3,000 horsepower, 10,000 tractive power units, and its variable operating costs are $180 per hour.
The engine set may be mixed (e.g., use two GM-I's and three GM-II's).

Write the linear program formulation of this problem.

Graph the constraint lines and the objective function line passing through the optimum point and
indicate the feasible region for the Enginola problem when:
(a) All parameters are as given except labor supply is 70 rather than 120.

(b) All parameters are as given originally except the variable profit contribution of a Cosmo
is $40 instead of $30.

Consider the problem:

Minimize 4x; + 3x,
Subject to 2x;+ x, 210
=3x;+2x,<6
X1t x2=26

x120,x2>20

Solve the problem graphically.

The surgical unit of a small hospital is becoming more concerned about finances. The hospital
cannot control or set many of the important factors that determine its financial health. For
example, the length of stay in the hospital for a given type of surgery is determined in large part
by government regulation. The amount that can be charged for a given type of surgical procedure
is controlled largely by the combination of the market and government regulation. Most of the
hospital’s surgical procedures are elective, so the hospital has considerable control over which
patients and associated procedures are attracted and admitted to the hospital. The surgical unit has
effectively two scarce resources, the hospital beds available to it (70 in a typical week), and the
surgical suite hours available (165 hours in a typical week). Patients admitted to this surgical unit
can be classified into the following three categories:

Surgical
Suite Hours Financial
Patient Type Days of Stay Needed Contribution
A 3 2 $240
B 5 1.5 $225

C 6 3 $425

What is Optimization? Chapter 1 21

For example, each type B patient admitted will use (i) 5 days of the 7 X 70 =490 bed-days
available each week, and (ii) 1.5 hours of the 165 surgical suite hours available each week. One
doctor has argued that the surgical unit should try to admit more type A patients. Her argument is
that, “in terms of $/days of stay, type 4 is clearly the best, while in terms of $/(surgical suite hour),
it is not much worse than B and C.”

Suppose the surgical unit can in fact control the number of each type of patient admitted each

week (i.e., they are decision variables). How many of each type should be admitted each week?
Can you formulate it as an LP?

2

Solving Math Programs with
LINGO

2.1 Introduction

The process of solving a math program requires a large number of calculations and is, therefore, best
performed by a computer program. The computer program we will use is called LINGO. The main
purpose of LINGO is to allow a user to quickly input a model formulation, solve it, assess the
correctness or appropriateness of the formulation based on the solution, quickly make minor
modifications to the formulation, and repeat the process. LINGO features a wide range of commands,
any of which may be invoked at any time. LINGO checks whether a particular command makes sense
in a particular context.

LINGO is available in two versions:

1) a Windows-specific version, and
2) a generic, text-based version.

The text-based version runs under most popular operating systems, including Unix and Linux. For
either version, additional information is available to the user under the Help menu item or Help
command. The Windows commands are covered briefly here. After the commands section, we will
show you how to enter and solve a simple model.

2.2 LINGO for Windows

When LINGO for Windows starts, it opens a blank window known as a Mode! Window. The Model
Window is where you “do all your work”. Output in LINGO is displayed in a Report Window. LINGO
can generate a number of reports pertaining to your model. The following is a list of all the commands
that are available to you, mainly in the model window.

2.2.1 File Menu

NEW F2

Use the NEW command from the File menu, press F2, or use the button to create a new Model
window. In the Model window, you can enter your model.

23

24 Chapter 2 Solving Math Programs with LINGO

OPEN Ctrl+O

Use the OPEN command from the File menu, press Ctr/+O, or use the button to open an existing file,
typically a model file.

SAVE Ctrl+S

Use the SAVE command from the File menu, press Ctr/+S, or use the button to save the active
(frontmost) window. You can save any window — Model, Report, or Command— in this way. If the
window is a new Model window, a Report window, or the Command window, SAVE opens the SAVE
AS... dialog.

SAVE AS... F5
Use the SAVE AS... command from the File menu or press F5 to save the active (frontmost) window
under the name you enter in the dialog box.

CLOSE F6

Use the CLOSE command from the File menu or press F6 to close the active (frontmost) window. If
the window is a new Model window or you have changed the file, you will be asked whether you want
to save the changes.

PRINT F7

Use the PRINT command from the File menu, use the button, or press F7 to send the active
(frontmost) window to your printer.

PRINT SETUP... F8
Use the PRINT SETUP... command from the File menu or press F8 to select the printer to which you
want output to go.

PRINT PREVIEW Shift +F8
Use the PRINT PREVIEW command from the File menu or press Shift+F8§ to display each page of the
active (frontmost) window as it will appear when printed.

LOG OUTPUT... F9
Use the LOG OUTPUT... command from the File menu or press F9 to send all subsequent screen
activity, which would be sent to the Command Window, to a text file. The command opens a standard
Windows file dialog from which you can name the log file and choose to echo output to the screen.
You may also choose either to overwrite an existing file in the Log Output... dialog box or to append
subsequent output to it.

Once you have selected a file to write to, a check will appear in the File menu before the Log
Output... Command. To turn off Log Output, simply select the command again.

TAKE COMMANDS... F11
Use the TAKE COMMANDS... command from the File menu or press /] to “Take” a LINGO batch
file with commands and model text for automated operation.

Solving Math Problems with LINGO Chapter2 25

IMPORT LINDO FILE... F12
Use the IMPORT LINDO FILE... command from the File menu or press F'/2 to open a file containing
a LINDO model in LINDO TAKE format.

EXPORT FILE

Use the MPS FORMAT... or MPI FORMAT... sub-commands from the File | Export File command to
write MPS or MPI format files, respectively. The MPS file format is an industry standard format
developed by IBM and is useful for passing models from one solver or platform to another. The MPI
file format is a special format developed by LINDO Systems for representing all classes of
mathematical programs—Ilinear, integer, and nonlinear.

LICENSE

Use the LICENSE command from the File menu to enter a new password for LINGO. Some versions
of LINGO require the user to input a password. Think of the password as a “key” that unlocks the
LINGO application. If you upgrade your copy of LINGO, you will need to enter a new password.

DATABASE USER INFO

Use the DATABASE USER INFO command from the File menu when linking models directly to
databases through use of the @ODBC() function. Many times the database you link your model to will
require a user id and/or password. To avoid having to enter your user id and password each time your
model is run, you can input them once at the start of your session using this command.

EXIT F10
Use the EXIT command from the File menu or press F10 to quit LINGO.

2.2.2 Edit Menu
UNDO Ctrl+Z
Use the UNDO command from the Edit menu, or press Ctr/+Z, to undo the last action.

CUT CtrI+X

Use the CUT command from the Edif menu, click the button, or press Ctr/+X to clear the selected text
and place it on the clipboard for pasting.

COPY Ctrl+C

Use the COPY command from the Edit menu, click the button, or press Ctrl+C to copy the selected
text to the clipboard for pasting.

PASTE Ctrl+V

Use the PASTE command from the Edit menu, click the button, or press Ctr/+V to paste clipboard
contents at the insertion point.

PASTE SPECIAL...

Use the PASTE SPECIAL command from the Edit menu to insert a selected item from the Windows
clipboard into the active (frontmost) window at the cursor insertion point, allowing choice as to how
the object is pasted.

26 Chapter 2 Solving Math Programs with LINGO

SELECT ALL... Ctrl +A
Use the SELECT ALL command from the Edit menu or press Ctrl+A4 to select the entire contents of the
active (frontmost) window.

FIND ... Ctri+F 2]
Use the FIND command from the Edif menu or press Ctr/+F to search for a desired string of text in
the active (frontmost) window.

FIND NEXT... Ctrl +N
Use the FIND NEXT command from the Edit menu or press Ctr/+N to find the next instance of the text
most recently searched for using the FIND command in the active (frontmost) window.

REPLACE Ctrl +H
Use the REPLACE command from the Edit menu or press Ctri+H to replace one string of text with
another in the active (frontmost) window.

GO TO LINE... Ctri+T [ZX]
Use the GO TO LINE command from the Edit menu, click on the button, or press Ctr/+T to enter a
line number of the active window to which you want to go.

MATCH PARENTHESIS Ctrl+P

Use the MATCH PARENTHESIS command from the Edit menu, click the button, or type Ctr/+P to
find the close parenthesis that corresponds to the open parenthesis you have selected.

In addition to this command, there is one other way to find matching parentheses. LINGO will
highlight matching parentheses in red when the Match Paren option is enabled under the
LINGO|Options command (see below). By placing the cursor immediately after one of the parentheses
of interest, you will notice that the color of the parenthesis changes from black to red. LINGO will
simultaneously display the matching parenthesis in red. These parentheses will remain displayed in red
until you move the cursor to another position.

PASTE FUNCTION

Use the PASTE FUNCTION command from the Edit menu to paste any of LINGO’s built-in functions
at the current insertion point. Choose the category of the LINGO function you want to paste, then
select the function from the cascading menu. LINGO inserts place holders for arguments in the
functions.

SELECT FONT... Ctrl +J

Use the SELECT FONT command from the Edif menu or press Ctr/+J to select a new font in which to
display the currently selected text.

INSERT NEW OBJECT

Use the INSERT NEW OBJECT command from the Edit menu to embed an OLE object into the
LINGO document.

Solving Math Problems with LINGO Chapter2 27

LINKS
Use the LINKS command from the Edit menu to control the links to external objects in your document.

OBJECT PROPERTIES Alt+Enter

Use the OBJECT PROPERTIES command from the Edit menu or press Alt+Enter to specify the
properties of a selected, embedded object

2.2.3 LINGO Menu

SOLVE Ctrl+U

Use the SOLVE command from the LINGO menu, click on the button, or press Ctr/+U to send the
model currently in memory to the LINGO solver. If you have more than one model open, the
frontmost (or active) window is the one in memory.

SOLUTION... CtrlI+W

Use the SOLUTION command from the LINGO menu, click the button, or press Ctrl+W to open the
Solutions dialog box. Here you can specify the way you want a report of the solution currently in
memory to appear. When you click OK, LINGO writes the report to a Report Window.

RANGE Ctrl+R
Use the RANGE command from the LINGO menu or press Ctri+R to see a standard range report.

OPTIONS... Ctrl +I &=1)
Use the OPTIONS... command from the LINGO menu, click the button, or press Ctr/+[to change a
number of parameters that affect the configuration of the program.

GENERATE... CtrI+G/CtrI+Q

Use the DISPLAY MODEL and DON’T DISPLAY MODEL sub-commands from the LINGO | Generate
command or press Ctrl+G or Ctrl+Q, respectively, to create an expanded version of the current model.
The expanded model explicitly lists all the generated constraints and variables in your model.

If you choose to display the model, LINGO will place a copy of the generated model in a new
window, which you may scroll through to examine, print, or save to disk. If you choose not to display
the model, LINDO will generate the model without displaying it, but will store the generated model for
later use by the appropriate solver.

PICTURE Ctrl+K
Use the PICTURE command from the LINGO menu or press Ctr/+K to display a model in matrix
form. Viewing the model in matrix form can be helpful in identifying special structure in your model.

MODEL STATISTICS Ctrl+E

Use the MODEL STATISTICS command from the LINGO menu or press Ctrl+E to list summary
statistics for your model. The statistics shown vary slightly depending on whether the model you're
working with is linear or nonlinear.

28 Chapter 2 Solving Math Programs with LINGO

LOOK... CtrI+L

Use the LOOK command from the LINGO menu or press Ctrl+L to generate a report containing your
model’s formulation. The LOOK command lets you choose all or selected lines of a model for
viewing. This command is mainly of interest if you are working in command line mode rather than the
more typical Windows environment.

2.2.4 Windows Menu

COMMAND WINDOW Ctrl +1

Use the COMMAND WINDOW command from the Windows menu or press Ctri+1 to open LINGO’s
Command Window. The Command Window gives you access to LINGO’s command line interface. In
general, Windows users will not need to make use of the Command Window. It is provided for users
who may want to put together application-specific “products” that make use of LINGO through
Command Window scripts to control the program. Please refer to your help file or user’s manual for
more information on the command line commands.

STATUS WINDOW Ctrl +2

Use the STATUS WINDOW command from the Windows menu or press Ctrl+2 to open LINGO’s
Solver Status window.

Use the SEND TO BACK command from the Windows menu, click on the button, or press Ctr/+B to
send the active (frontmost) window to the back. This command is very useful for switching between a
Model window and a Report Window.

CLOSE ALL Ctrl+3

Use the CLOSE ALL command from the Windows menu, click on the button, or press Ctrl+3 to close
all open model windows and dialog boxes.

TILE Ctrl+4

Use the TILE command from the Windows menu or press Ctri+4 to arrange all open windows, so they
each occupy the same amount of space within the LINGO program window.

CASCADE Ctrl+5

Use the CASCADE command from the Windows menu or press Ctrl+5 to arrange all open windows in
a cascade from upper left to lower right with the currently active window on top.

ARRANGE ICONS Ctrl+6

Use the ARRANGE ICONS command from the Windows menu or press Ctrl+6 to move icons
representing any minimized windows, so they are arranged across the bottom of the screen.

LIST OF WINDOWS

A list of all open windows appears at the bottom of the Windows menu, with the currently active
window checked. You may select a window from the list to bring it to the front.

Solving Math Problems with LINGO Chapter2 29

2.2.5 Help Menu

HELP TOPICS —?—J
Use the HELP TOPICS command from the Help menu, or click on the first question mark button to
open LINGO help to the Contents section. Press the second button (with the arrow) to invoke
context-sensitive help. Once the cursor has changed to the question mark, selecting any command will
take you to help for that command.

REGISTER

Use the REGISTER command from the Help menu to register your version of LINGO online. You will
need a connection to the internet open for this command to work. Enter your personal information in
the dialog box supplied and select the register button. Your information will be sent directly to LINDO
Systems via the Internet.

LINDO Systems is constantly working to make our products faster and easier to use. Registering
your software with LINDO ensures that you will be kept up-to-date on the latest enhancements and
other product news.

AUTOUPDATE

Use the AUTOUPDATE command from the Help menu to have LINGO automatically check every
time you start the LINGO software whether there is a more recent version of LINGO available for
download on the LINDO Systems website. You will need a connection to the internet open for this
command to work.

ABOUT LINGO...

Use the ABOUT LINGO command from the Help menu to view information about the version of
LINGO you are currently using (e.g., the release number, constraint limit, variable limit, and memory
limit).

2.2.6 Summary
This is not intended to be an exhaustive description of the commands available in the Windows version
of LINGO. Please refer to your help file or user’s manual for a more in-depth analysis.

2.3 Getting Started on a Small Problem

When you start LINGO for Windows, the program opens an <untitled> window for you. For purposes
of introduction, let’s enter the Enginola problem we looked at in the previous chapter directly into this
<untitled> window:

MAX = (20 * A) + (30 * C);

'note that the parentheses aren't needed, because LINGO;
'will do multiplication and division first;

A < 60;

C < 50;

A+ 2 * C < 120;

Note, even though the strict inequality, “<”, was entered above, LINGO interprets it as the loose
inequality, “<”. The reason is that typical keyboards have only the strict inequalities, < and >. You

30 Chapter 2 Solving Math Programs with LINGO

may, and in fact are encouraged to, use the two symbols “<=" to emphasize an inequality is of a
less-than-or-equal-to nature. Also, notice comments are preceded by the exclamation mark (!). A
semicolon (;) terminates a comment.

Click on the Solve/“bullseye” button , use the Solve command from the So/ve menu, or press
Ctrl+U to solve the model. While solving, LINGO will show the Solver Status Window with
information about the model and the solution process. When it’s done solving, the “State” field should
read “Global Optimum”. Then, click on the “Close” button to close the Solver Status Window:

The following solution is now in a Report Window:

Optimal solution found at step: 1
Objective value: 2100.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000
Row Slack or Surplus Dual Price
1 2100.000 1.000000
2 0.0000000 5.000000
3 20.00000 0.0000000
4 0.0000000 15.00000

Editing the model is simply a matter of finding and changing the variable, coefficient, or direction
you want to chanie. Any changes will be taken into account the next time that you solve the model.

Click on the
work.

button, use the Save command from the File menu, or press Ctr/+S to save your

2.4 Integer Programming with LINGO

Fairly shortly after you start looking at problems for which optimization might be applicable, you
discover the need to restrict certain variables to integer values (i.e., 0, 1, 2, etc.). LINGO allows you to
identify such variables. We give an introductory treatment here. It is discussed more thoroughly in
Chapter 11, Formulating and Solving Integer Programs. Integer variables in LINGO can be either 0/1
or general. Variables restricted to the values 0 or 1 are identified with the @BIN specification.
Variables that may be 0, 1, 2, etc., are identified with the @GIN specification.

In the following model, the variables TOM, DICK, and HARRY are restricted to be 0 or 1:

MAX = 4 * TOM + 3 * DICK + 2 * HARRY;

2.5 * TOM + 3.1 * HARRY <= 5;
.2 * TOM + .7 * DICK + .4 * HARRY <= 1;
@BIN (TOM) ;

@BIN (DICK) ;
@BIN (HARRY) ;

Solving Math Problems with LINGO Chapter2 31

After solving, to see the solution, choose Solution from the Reports menu, or click on the
button, and choose A/l Values. The Report Window displays the following:

Optimal solution found at step: 1
Objective value: 7.000000
Branch count: 0
Variable Value Reduced Cost
TOM 1.000000 -4.000000
DICK 1.000000 -3.000000
HARRY 0.0000000 -2.000000
Row Slack or Surplus Dual Price
1 7.000000 1.000000
2 2.500000 0.0000000
3 0.1000000 0.0000000

General integers, which can be 0, 1, 2, etc., are identified in analogous fashion by using @GIN
instead of @BIN, for example:

@GIN (TONIC) ;

This restricts the variable TONICt0 0, 1,2, 3,

The solution method used is branch-and-bound. It is an intelligent enumeration process that will
find a sequence of better and better solutions. As each one is found, the Status Window will be updated
with the objective value and a bound on how good a solution might still remain. After the enumeration
is complete, various commands from the Reports menu can be used to reveal information about the
best solution found.

Let’s look at a slightly modified version of the original Enginola problem and see how the GIN
specification might help:

MAX = 20 * A + 30 * C;
A < 60;

C < 50;
A+ 2 * C < 115;

Notice the capacity of 115 on the labor constraint (Row 4):

Optimal solution found at step: 1
Objective value: 2025.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 27.50000 0.0000000
Row Slack or Surplus Dual Price
1 2025.000 1.000000
2 0.0000000 5.000000
3 22.50000 0.0000000
4 0.0000000 15.00000

32 Chapter 2 Solving Math Programs with LINGO

Note that a fractional quantity is recommended for C. If fractional quantities are undesirable,
declare 4 and C as general integer variables:

MAX = 20 * A + 30 * C;
A < 60;

C < 50;

A+ 2 * C< 115;

@QGIN(A);

@GIN(C);

Solving results in the following:

Optimal solution found at step: 4
Objective value: 2020.000
Branch count: 1

Variable Value Reduced Cost

A 59.00000 -20.00000

C 28.00000 -30.00000

Row Slack or Surplus Dual Price

1 2020.000 1.000000

2 1.000000 0.0000000

3 22.00000 0.0000000

4 0.0000000 0.0000000

2.4.1 Warning for Integer Programs

Although the integer programming (IP) capability is very powerful, it requires skill to use effectively.
In contrast to linear programs, just because you can formulate a problem as an integer program, does
not mean that it can be solved in very little time. It is very easy to prepare a bad formulation for an
essentially easy problem. A bad formulation may require intolerable amounts of computer time to
solve. Therefore, you should have access to someone who is experienced in IP formulations if you plan
to make use of the IP capability. Good formulations of integer programs are discussed further in
Chapter 11, Formulating and Solving Integer Programs.

2.5 Solving an Optimization Model

Solving a linear or integer program is a numerically intensive process. We do not discuss the
implementation details of the solution algorithms. Writing an efficient solver requires several
person-years of effort. For a good introduction to some of the algorithms, see Martin (1999) or
Greenberg (1978).

Even though commercial optimization is quite robust, good practice is to avoid using extremely
small or extremely large numbers in a formulation. You should try to “scale” the model, so there are
no extremely small or large numbers. You should not measure weight in ounces one place and volume
in cubic miles somewhere else in the same problem). A rule of thumb is there should be no nonzero
coefficient whose absolute value is greater than 100,000 or less than 0.0001. If LINGO feels the model
is poorly scaled, it will display a warning. You can usually disregard this warning. However, it is good
practice to choose your units of measure appropriately, so this message does not appear.

Solving Math Problems with LINGO Chapter2 33

2.6 Problems

1.

Recall the Enginola/Astro/Cosmo problem of the previous chapter. Suppose we add the restriction
that only an even number (0, 2, 4...) of Cosmos are allowed. Show how to exploit the @GIN
command to represent this feature. Note, this kind of restriction sometimes arises in the
manufacture of plastic wrap. The product starts out as a long hollow tube. It is flattened and then
two resulting edges are cut off to leave you with two flat pieces. Thus, the number of units
produced is always a multiple of 2.

Using your favorite text editor, enter the Enginola formulation. Save it as a simple, unformatted
text file. Start up LINGO, read the model into LINGO, and solve it.

Continuing from (2), use LINGO to prepare an output file containing both the formulation and
solution. Read this file into your favorite text editor and print it.

34 Chapter 2 Solving Math Programs with LINGO

3

Analyzing Solutions

3.1 Economic Analysis of Solution Reports

A substantial amount of interesting economic information can be gleaned from the solution report of a
model. In addition, optional reports, such as range analysis, can provide further information. The usual
use of this information is to do a quick “what if” analysis. The typical kinds of what if questions are:

(a) What would be the effect of changing a capacity or demand?
(b) What if a new opportunity becomes available? Is it a worthwhile opportunity?

3.2 Economic Relationship Between Dual Prices and Reduced
Costs

The reader hungering for unity in systems may convince himself or herself that a reduced cost is really
a dual price born under the wrong sign. Under our convention, the reduced cost of a variable x is really
the dual price with the sign reversed on the constraint x > 0. Recall the reduced cost of the variable x
measures the rate at which the solution value deteriorates as x is increased from zero. The dual price on
x > 0 measures the rate at which the solution value improves as the right-hand side (and thus x) is
increased from zero.

Our knowledge about reduced costs and dual prices can be restated as:

Reduced cost of an (unused) activity: amount by which profits will decrease if one unit of this
activity is forced into the solution.

Dual price of a constraint: one unit reduces amount by which profits will decrease if the
availability of the resource associated with this constraint.

We shall argue and illustrate that the reduced cost of an activity is really its net opportunity cost if
we “cost out” the activity using the dual prices as charges for resource usage. This sounds like good
economic sense. If one unit of an activity is forced into the solution, it effectively reduces the
availability of the resources it uses. These resources have an imputed value by way of the dual prices.
Therefore, the activity should be charged for the value used. Let’s look at an example and check if the
argument works.

35

36 Chapter 3 Analyzing Solutions

3.2.1 The Costing Out Operation: An lllustration

Suppose Enginola is considering adding a video recorder to its product line. Market Research and
Engineering estimate the direct profit contribution of a video recorder as $47 per unit. It would be
manufactured on the Astro line and would require 3 hours of labor. If it is produced, it will force the
reduction of both Astro production (because it competes for a production line) and Cosmo production
(because it competes for labor). Is this tradeoff worthwhile? It looks promising. The video recorder
makes more dollars per hour of labor than a Cosmo and it makes more efficient use of Astro capacity
than Astros. Recall the dual prices on the Astro and labor capacities in the original solution were $5
and $15. If we add this variable to the model, it would have a +47 in the objective function, a +1 in
row 2 (the Astro capacity constraint), and a +3 in row 4 (the labor capacity constraint). We can “cost
out” an activity or decision variable by charging it for the use of scarce resources. What prices should
be charged? The obvious prices to use are the dual prices. The +47 profit contribution can be thought
of as a negative cost. The costing out calculations can be arrayed as in the little table below:

Row Coefficient Dual Price Charge

1 47 1 —47
2 +5 +5
3 0 0 0

4 3 15 +45

Total opportunity cost=+3

Thus, a video recorder has an opportunity cost of $3. A negative one (—1) is applied to the 47
profit contribution because a profit contribution is effectively a negative cost. The video recorder’s net
cost is positive, so it is apparently not worth producing.

The analysis could be stopped at this point, but out of curiosity we’ll formulate the relevant LP
and solve it. If /= number of video recorders to produce, then we wish to solve:

MAX = 20 * A + 30 * C + 47 * V;
A + V <= 60;
C <= 50;
A + 2 *C + 3 *V<=120;

The solution is:

Optimal solution found at step: 1
Objective value: 2100.000
Variable Value Reduced Cost
A 60.000000 0.000000
C 30.000000 0.000000
\ 0.000000 3.000000
Row Slack or Surplus Dual Price
1 2100.000000 1.000000
2 0.000000 5.000000
3 20.000000 0.000000
4 0.000000 15.000000

Video recorders are not produced. Notice the reduced cost of V is $3, the value we computed
when we “costed out” V. This is an illustration of the following relationship:

The reduced cost of an activity equals the weighted sum of its resource usage rates
minus its profit contribution rate, where the weights applied are the dual prices. A

Analyzing Solutions Chapter 3 37

“min” objective is treated as having a dual price of +1. A “max” objective is treated
as having a dual price of —1 in the costing out process.

Notice that the dual prices of an LP fully allocate the total profit to all the scarce resources, i.e., for the
above example, 5 *60 + 0*50 + 15%120 = 2100.

3.2.2 Dual Prices, LaGrange Multipliers, KKT Conditions, and Activity
Costing

When you solve a continuous optimization problem with LINGO or What’sBest/, you can optionally
have dual prices reported for each constraint. For simplicity, assume that our objective is to maximize
and all constraints are less-than-or-equal-to when all variable expressions are brought to the left-hand
side. The dual price of a constraint is then the rate of change of the optimal objective value with
respect to the right-hand side of the constraint. This is a generalization to inequality constraints of the
idea of a LaGrange multiplier for equality constraints. This idea has been around for more than 100
years. To illustrate, consider the following slightly different, nonlinear problem:

[ROW1] MAX = 40*(X+1)".5 + 30*(Y+1)~.5 + 25*(Z+1)".5;

[ROW2] X + 15* Z <= 45;
[ROW3] Y + Z <= 45;
[ROW4] X* X + 3* Y*Y + 9 * 7Z*7Z <= 3500;

We implicitly assume that X, Y, Z >= 0.

When solved, you get the solution:

Objective value = 440.7100
Variable Value Reduced Cost
X 45.00000 0.0000000
Y 22.17356 0.0000000
Z 0.0000000 0.1140319
Row Slack or Surplus Dual Price
ROW2 0.0000000 0.8409353
ROW3 22.82644 0.0000000
ROW4 0.0000000 0.02342115

For example, the dual price of .8409353 on ROW?2 implies that if the RHS of ROW?2 is increased by a
small amount, epsilon, the optimal objective value will increase by about .8409353 * epsilon.

When trying to understand why a particular variable or activity is unused (i.e., at zero), a useful
perspective is that of “costing out the activity”. We give the variable “credit” for its incremental
contribution to the objective and charge it for its incremental usage of each constraint, where the
charging rate applied is the dual price of the constraint. The incremental contribution, or usage, is
simply the partial derivative of the LHS with respect to the variable. The costing out of variable Z is
illustrated below:

Row Partial w.r.t Z Dual price Total charge
ROW1 12.5 -1 -12.5

ROW2 15 .8409353 12.614029
ROW3 1 0 0

ROW4 0 .02342115 0

Net (Reduced Cost): .11403

38 Chapter 3 Analyzing Solutions

On the other hand, if we do the same costing out for X, we get:

Row Partial w.r.t X Dual price Total charge
ROW1 2.9488391 -1 -2.9488391
ROW2 1 .8409353 .8409353
ROW3 0 0 0
ROW4 90 .02342115 2.107899

Net (Reduced Cost) : 0

These two computations are illustrations of the Karush/Kuhn/Tucker (KKT) conditions, namely, in an
optimal solution:

a) a variable that has a positive reduced cost will have a value of zero;

b) a variable that is used (i.e., is strictly positive) will have a reduced cost of zero;
c) a “<=" constraint that has a positive dual price will have a slack of zero;

d) a “<=” constraint that has strictly positive slack, will have a dual price of zero.

These conditions are sometimes also called complementary slackness conditions.

3.3 Range of Validity of Reduced Costs and Dual Prices

In describing reduced costs and dual prices, we have been careful to limit the changes to “small”
changes. For example, if the dual price of a constraint is $3/hour, then increasing the number of hours
available will improve profits by $3 for each of the first few hours (possibly less than one) added.
However, this improvement rate will generally not hold forever. We might expect that, as we make
more hours of capacity available, the value (i.e., the dual price) of these hours would not increase and
might decrease. This might not be true for all situations, but for LP’s it is true that increasing the
right-hand side of a constraint cannot cause the constraint’s dual price to increase. The dual price can
only stay the same or decrease.

As we change the right-hand side of an LP, the optimal values of the decision variables may
change. However, the dual prices and reduced costs will not change as long as the “character” of the
optimal solution does not change. We will say the character changes (mathematicians say the basis
changes) when either the set of nonzero variables or the set of binding constraints (i.e., have zero
slack) changes. In summary, as we alter the right-hand side, the same dual prices apply as long as the
“character” or “basis” does not change.

Most LP programs will optionally supplement the solution report with a range (i.e., sensitivity
analysis) report. This report indicates the amounts by which individual right-hand side or objective
function coefficients can be changed unilaterally without affecting the character or “basis” of the
optimal solution. Recall the previous model:

MAX = 20 * A + 30 * C + 47 * V;
A + V <= 60;
C <= 50;
A + 2 *C + 3 *V<=120;

Analyzing Solutions Chapter 3 39

To obtain the sensitivity report, while in the window with the program, choose Range from the
LINGO menu. The sensitivity report for this problem appears below:

Ranges in which the basis is unchanged:
Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease

A 20.00000 INFINITY 3.000000

C 30.00000 10.00000 3.000000

v 47.00000 3.000000 INFINITY
Right-hand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

2 60.00000 60.00000 40.00000

3 50.00000 INFINITY 20.00000

4 120.0000 40.00000 60.00000

Again, we find two sections, one for variables and the second for rows or constraints. The 3 in the
A row of the report means the profit contribution of 4 could be decreased by up to $3/unit without
affecting the optimal amount of 4 and C to produce. This is plausible because one Astro and one
Cosmo together make $50 of profit contribution. If the profit contribution of this pair is decreased by
$3 (to $47), then a V would be just as profitable. Note that one /" uses the same amount of scarce
resources as one Astro and one Cosmo together. The INFINITY in the same section of the report means
increasing the profitability of 4 by any positive amount would have no effect on the optimal amount of
A and C to produce. This is intuitive because we are already producing 4’s to their upper limit.

The “allowable decrease” of 3 for variable C follows from the same argument as above. The
allowable increase of 10 in the C row means the profitability of C would have to be increased by at
least $10/unit (thus to $40/unit) before we would consider changing the values of 4 and C. Notice at
$40/unit for C’s, the profit per hour of labor is the same for both 4 and C.

In general, if the objective function coefficient of a single variable is changed within the range
specified in the first section of the range report, then the optimal values of the decision variables, A, C,
and V, in this case, will not change. The dual prices, reduced cost and profitability of the solution,
however, may change.

In a complementary sense, if the right-hand side of a single constraint is changed within the range
specified in the second section of the range report, then the optimal values of the dual prices and
reduced costs will not change. However, the values of the decision variables and the profitability of the
solution may change.

For example, the second section tells us that, if the right-hand side of row 3 (the constraint C < 50)
is decreased by more than 20, then the dual prices and reduced costs will change. The constraint will
then be C < 30 and the character of the solution changes in that the labor constraint will no longer be
binding. The right-hand side of this constraint (C < 50) could be increased an infinite amount,
according to the range report, without affecting the optimal dual prices and reduced costs. This makes
sense because there already is excess capacity on the Cosmo line, so adding more capacity should have
no effect.

40 Chapter 3 Analyzing Solutions

Let us illustrate some of these concepts by re-solving our three-variable problem with the amount
of labor reduced by 61 hours down to 59 hours. The formulation is:

MAX = 20 * A + 30 * C + 47 * V;
A + V <= 60;
C <= 50;
A + 2 *C 4+ 3 *V <= 59;

The solution is:

Optimal solution found at step: 1
Objective value: 1180.000
Variable Value Reduced Cost
A 59.00000 0.0000000
C 0.0000000 10.00000
\ 0.0000000 13.00000
Row Slack or Surplus Dual Price
1 1180.000 1.000000
2 1.000000 0.0000000
3 50.00000 0.0000000
4 0.0000000 20.00000

Ranges in which the basis is unchanged:
Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease

A 20.00000 INFINITY 4.333333

C 30.00000 10.00000 INFINITY

\ 47.00000 13.00000 INFINITY
Right-hand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

2 60.00000 INFINITY 1.000000

3 50.00000 INFINITY 50.00000

4 59.00000 1.000000 59.00000

First, note that, with the reduced labor supply, we no longer produce any Cosmos. Their reduced
cost is now $10/unit, which means, if their profitability were increased by $10 to $40/unit, then we
would start considering their production again. At $40/unit for Cosmos, both products make equally
efficient use of labor.

Analyzing Solutions Chapter 3 41

Also note, since the right-hand side of the labor constraint has reduced by more than 60, most of
the dual prices and reduced costs have changed. In particular, the dual price or marginal value of labor
is now $20 per hour. This is because an additional hour of labor would be used to produce one more
$20 Astro. You should be able to convince yourself the marginal value of labor behaves as follows:

Labor Available Dual Price Reason

0 to 60 hours $20/hour Each additional hour will be used
to produce one $20 Astro.

60 to 160 hours $15/hour Each additional hour will be used
to produce half a $30 Cosmo.

160 to 280 hours $13.5/hour Give up half an Astro and add half
of a V for profit of 0.5 (20 +
47).

More than 280 hours $0 No use for additional labor.

In general, the dual price on any constraint will behave in the above stepwise decreasing fashion.

Figures 3.1 and 3.2 give a global view of how total profit is affected by changing either a single
objective coefficient or a single right-hand side. The artists in the audience may wish to note that, for a
maximization problem:

a) Optimal total profit as a function of a single objective coefficient always has a bowl
shape. Mathematicians say it is a convex function.

b) Optimal total profit as a function of a single right-hand side value always has an inverted
bowl shape. Mathematicians say it is a concave function.

For some problems, as in Figures 3.1 and 3.2, we only see half of the bowl. For minimization
problems, the orientation of the bowl in (a) and (b) is simply reversed.

When we solve a problem for a particular objective coefficient or right-hand side value, we obtain a
single point on one of these curves. A range report gives us the endpoints of the line segment on which this
one point lies.

42 Chapter 3 Analyzing Solutions

Figure 3.1 Total Profit vs. Profit Contribution per Unit of Activity V

T
o 2900
t

a 2800
p 2700
.

o

> 2600
i

t 2500
€ 2400
o

n

t 2300
:

i

b 2200
u

t 2100
i

o

n

50 60 70
Profit Contribution/unit of Activity V

Figure 3.2 Profit vs. Labor Available

Z 4500 [

1 4320 |

a

I 3750 [

P

r

o 3000

f 2700 [

I

t 2250 [

[¢]

o]

n 1500 [

t 1200 [

'

i

t 750 |-

i

o

n [| L 1 1 |

0 50 100 150 200 250 300
60 160 280

Labor Hours Available

Analyzing Solutions Chapter 3 43

3.3.1 Predicting the Effect of Simultaneous Changes in Parameters—The
100% Rule

The information in the range analysis report tells us the effect of changing a single cost or resource
parameter. The range report for the Enginola problem is presented as an example:

Ranges in which the basis is unchanged:
Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease

A 20.00000 INFINITY 5.000000

C 30.00000 10.00000 30.00000
Right-hand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

2 60.00000 60.00000 40.00000

3 50.00000 INFINITY 20.00000

4 120.0000 40.00000 60.00000

The report indicates the profit contribution of an Astro could be decreased by as much as $5/unit
without changing the basis. In this case, this means that the optimal solution would still recommend
producing 60 Astros and 30 Cosmos.

Suppose, in order to meet competition, we are considering lowering the price of an Astro by
$3/unit and the price of a Cosmo by $10/unit. Will it still be profitable to produce the same mix?
Individually, each of these changes would not change the solution because 3 < 5 and 10 < 30.

However, it is not clear these two changes can be made simultaneously. What does your intuition
suggest as a rule describing the simultaneous changes that do not change the basis (mix)?

The 100% Rule. You can think of the allowable ranges as slack, which may be used up in changing
parameters. It is a fact that any combination of changes will not change the basis if
the sum of percentages of slack used is less than 100%. For the simultaneous
changes we are contemplating, we have:

3) (10\
(g) x 100 +\30/) x 100 = 60% + 33% = 93.3% < 100%

This satisfies the condition, so the changes can be made without changing the basis. Bradley, Hax,
and Magnanti (1977) have dubbed this rule the 100% rule. Since the value of 4 and C do not change,
we can calculate the effect on profits of these changes as -3 x 60 — 10 x 30 = —480. So, the new profit
will be 2100 — 480 = 1620.

The altered formulation and its solution are:

MAX = 17 * A + 20 * C;
A <= 60;
C <= 50;
A+ 2 * C <= 120;

44 Chapter 3 Analyzing Solutions

Optimal solution found at step: 1
Objective value: 1620.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000
Row Slack or Surplus Dual Price
1 1620.000 1.000000
2 0.0000000 7.000000
3 20.00000 0.0000000
4 0.0000000 10.00000

3.4 Sensitivity Analysis of the Constraint Coefficients

Sensitivity analysis of the right-hand side and objective function coefficients is somewhat easy to
understand because the objective function value changes linearly with modest changes in these
coefficients. Unfortunately, the objective function value may change nonlinearly with changes in
constraint coefficients. However, there is a very simple formula for approximating the effect of small
changes in constraint coefficients. Suppose we wish to examine the effect of decreasing by a small
amount e the coefficient of variable j in row 7 of the LP. The formula is:

(improvement in objective value) = (value of variable j) x (dual price of row i) x e

Example: Consider the problem:

MAX = (20 * A) + (30 * C);
A <= 65;
C <= 50;

A+ 2 * C <= 115;

with solution:

Optimal solution found at step: 1
Objective value: 2050.000
Variable Value Reduced Cost
A 65.00000 0.0000000
C 25.00000 0.0000000
Row Slack or Surplus Dual Price
1 2050.000 1.000000
2 0.0000000 5.000000
3 25.00000 0.0000000
4 0.0000000 15.00000

Now, suppose it is discovered that the coefficient of C in row 4 should have been 2.01, rather than
2. The formula implies the objective value should be decreased by approximately 25 x 15 x .01 = 3.75.

The actual objective value, when this altered problem is solved, is 2046.269, so the actual
decrease in objective value is 3.731.

The formula for the effect of a small change in a constraint coefficient makes sense. If the change
in the coefficient is small, then the values of all the variables and dual prices should remain essentially
unchanged. So, the net effect of changing the 2 to a 2.01 in our problem is effectively to try to use
25 x .01 additional hours of labor. So, there is effectively 25 x .01 fewer hours available. However, we
have seen that labor is worth $15 per hour, so the change in profits should be about 25 x .01 x 15,
which is in agreement with the original formula.

Analyzing Solutions Chapter 3 45

This type of sensitivity analysis gives some guidance in identifying which coefficient should be
accurately estimated. If the product of variable ;’s value and row i’s dual price is relatively large, then
the coefficient in row i for variable j should be accurately estimated if an accurate estimate of total
profit is desired.

3.5 The Dual LP Problem, or the Landlord and the Renter

As you formulate models for various problems, you will probably discover that there are several rather
different-looking formulations for the same problem. Each formulation may be correct and may be
based on taking a different perspective on the problem. An interesting mathematical fact is, for LP
problems, there are always two formulations (more accurately, a multiple of two) to a problem. One
formulation is arbitrarily called the primal and the other is referred to as the dual. The two different
formulations arise from two different perspectives one can take towards a problem. One can think of
these two perspectives as the landlord’s and the renter’s perspectives.

In order to motivate things, consider the following situations. Some textile “manufacturers” in
Italy own no manufacturing facilities, but simply rent time as needed from firms that own the
appropriate equipment. In the U.S., a similar situation exists in the recycling of some products. Firms
that recycle old telephone cable may simply rent time on the stripping machines that are needed to
separate the copper from the insulation. This rental process is sometimes called “tolling”. In the
perfume industry, many of the owners of well-known brands of perfume own no manufacturing
facilities, but simply rent time from certain chemical formulation companies to have the perfumes
produced as needed. The basic feature of this form of industrial organization is that the owner of the
manufacturing resources never owns either the raw materials or the finished product.

Now, suppose you want to produce a product that can use the manufacturing resources of the
famous Enginola Company, manufacturer of Astros, Cosmos, and Video Recorders. You would thus
like to rent production capacity from Enginola. You need to deduce initial reasonable hourly rates to
offer to Enginola for each of its three resources: Astro line capacity, Cosmo line capacity, and labor.
These three hourly rates are your decision variables. You in fact would like to rent all the capacity on
each of the three resources. Thus, you want to minimize the total charge from renting the entire
capacities (60, 50, and 120). If your offer is to succeed, you know your hourly rates must be
sufficiently high, so none of Enginola’s products are worth producing (e.g., the rental fees foregone by
producing an Astro should be greater than 20). These “it’s better to rent” conditions constitute the
constraints.

Formulating a model for this problem, we define the variables as follows:

PA = price per unit to be offered for Astro line capacity,
PC = price per unit to be offered for Cosmo line capacity,
PL = price per unit to be offered for labor capacity.

Then, the appropriate model is:

The Dual Problem:

MIN = 60 * PA + 50 * PC + 120 * PL;
'ASTRO; PA + PL > 20;

ICOSMO; PC + 2*PL > 30;

'VR; PA + 3 * PL > 47;

The three constraints force the prices to be high enough, so it is not profitable for Enginola to
produce any of its products.

46 Chapter 3 Analyzing Solutions

The solution is:

Optimal solution found at step: 2
Objective value: 2100.000
Variable Value Reduced Cost
PA 5.000000 0.0000000
PC 0.0000000 20.00000
PL 15.00000 0.0000000
Row Slack or Surplus Dual Price
1 2100.000 1.000000
2 0.0000000 -60.00000
3 0.0000000 -30.00000
4 3.000000 0.0000000

Recall the original, three-product Enginola problem was:

The Primal Problem:
MAX = 20 * A + 30 * C + 47 * V;
A + V <= 60;

C <= 50;

A+ 2 *C+ 3 *V<=120;

with solution:

Optimal solution found at step: 1
Objective value: 2100.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000
\ 0.0000000 3.000000
Row Slack or Surplus Dual Price
1 2100.000 1.000000
2 0.0000000 5.000000
3 20.00000 0.0000000
4 0.0000000 15.00000

Notice the two solutions are essentially the same, except prices and decision variables are
reversed. In particular, note the price the renter should pay is exactly the same as Enginola’s original
profit contribution. This “Minimize the rental cost of the resources, subject to all activities being
unprofitable” model is said to be the dual problem of the original “Maximize the total profit, subject to
not exceeding any resource availabilities” model. The equivalence between the two solutions shown
above always holds. Upon closer scrutiny, you should also notice the dual formulation is essentially
the primal formulation “stood on its ear,” or its transpose, in fancier terminology.

Why might the dual model be of interest? The computational difficulty of an LP is approximately
proportional to 7°n, where m = number of rows and # = number of columns. If the number of rows in
the dual is substantially smaller than the number of rows in the primal, then one may prefer to solve
the dual.

Additionally, certain constraints, such as simple upper bounds (e.g., x < 1) are computationally
less expensive than arbitrary constraints. If the dual contains only a small number of arbitrary
constraints, then it may be easier to solve the dual even though it may have a large number of simple
constraints.

Analyzing Solutions Chapter 3 47

The term “dual price” arose because the marginal price information to which this term is applied
is a decision variable value in the dual problem.

We can summarize the idea of dual problems as follows. If the original or primal problem has a
Maximize objective with < constraints, then its dual has a Minimize objective with = constraints.
The dual has one variable for each constraint in the primal and one constraint for each variable in the
primal. The objective coefficient of the kth variable of the dual is the right-hand side of the kth
constraint in the primal. The right-hand side of constraint k£ in the dual is equal to the objective
coefficient of variable k in the primal. Similarly, the coefficient in row i of variable j in the dual equals
the coefficient in row j of variable i in the primal.

In order to convert all constraints in a problem to the same type, so one can apply the above, note
the following two transformations:

(1) The constraint 2x + 3y =5 is equivalent to the constraints 2x + 3y > 5 and 2x + 3y < 5;
(2) The constraint 2x + 3y > 5 is equivalent to —2x — 3y < -5.

Example: Write the dual of the following problem:

Maximize 4x —2y

subject to 2x + 6y <12
3x-2y=1
4x+2y 25

Using transformations (1) and (2) above, we can rewrite this as:

Maximize 4x —2y

subjectto 2x + 6y <12
3x-2y<l1
“3x+2y<-1
—4x-2y<-5

Introducing the dual variables 7, s, #, and u, corresponding to the four constraints, we can write the
dual as:

Minimize 12r+s—1¢—5u
subjectto 2r+3s—3t—4u>4
6r-2s +2t—2u>-2

3.6 Problems

1. The Enginola Company is considering introducing a new TV set, the Quasi. The expected profit
contribution is $25 per unit. This unit is produced on the Astro line. Production of one Quasi
requires 1.6 hours of labor. Using only the original solution below, determine whether it is
worthwhile to produce any Quasi’s, assuming no change in labor and Astro line capacity.

The original Enginola problem with solution is below.

MAX = 20 * A + 30 * C;
A <= 60;

C <= 50;
A+ 2 * C <= 120;

48 Chapter 3 Analyzing Solutions

Optimal solution found at step: 1
Objective value: 2100.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000
Row Slack or Surplus Dual Price
1 2100.000 1.000000
2 0.0000000 5.000000
3 20.00000 0.0000000
4 0.0000000 15.00000

The Judson Corporation has acquired 100 lots on which it is about to build homes. Two styles of
homes are to be built, the “Cape Cod” and the “Ranch Home”. Judson wishes to build these 100
homes over the next nine months. During this time, Judson will have available 13,000 man-hours
of bricklayer labor and 12,000 hours of carpenter labor. Each Cape Cod requires 200 man-hours
of carpentry labor and 50 man-hours of bricklayer labor. Each Ranch Home requires 120 hours of
bricklayer labor and 100 man-hours of carpentry. The profit contribution of a Cape Cod is
projected to be $5,100, whereas that of a Ranch Home is projected at $5,000. When formulated as
an LP and solved, the problem is as follows:

5100 * C + 5000 * R;
cC + R < 100;

200 * C + 100 * R < 12000;
50 * C + 120 * R < 13000;

MAX

Optimal solution found at step: 0
Objective value: 502000.0
Variable Value Reduced Cost
C 20.00000 0.0000000
R 80.00000 0.0000000
Row Slack or Surplus Dual Price
1 502000.0 1.000000
2 0.0000000 4900.000
3 0.0000000 1.000000
4 2400.000 0.0000000

Ranges in which the basis is unchanged:
Objective Coefficient Ranges

Current Allowable Allowable

Variable Coefficient Increase Decrease

C 5100.000 4900.000 100.0000

R 5000.000 100.0000 2450.000
Right-hand Side Ranges

Row Current Allowable Allowable

RHS Increase Decrease

2 100.0000 12.63158 40.00000

3 12000.00 8000.000 2000.000

4 13000.00 INFINITY 2400.000

(a) A gentleman who owns 15 vacant lots adjacent to Judson’s 100 lots needs some money
quickly and offers to sell his 15 lots for $60,000. Should Judson buy? What assumptions
are you making?

Analyzing Solutions Chapter 3 49

(b) One of Judson’s salesmen who is a native of Massachusetts feels certain he could sell the
Cape Cods for $2,000 more each than Judson is currently projecting. Should Judson
change its planned mix of homes? What assumptions are inherent in your
recommendation?

3. Jack Mazzola is an industrial engineer with the Enginola Company. He has discovered a way of
reducing the amount of labor used in the manufacture of a Cosmo TV set from 2 hours per set to
1.92 hours per set by replacing one of the assembled portions of the set with an integrated circuit
chip. It is not clear at the moment what this chip will cost. Based solely on the solution report
below (i.e., do not solve another LP), answer the following questions:

(a) Assuming labor supply is fixed, what is the approximate value of one of these chips in
the short run?

(b) Give an estimate of the approximate increase in profit contribution per day of this
change, exclusive of chip cost.

MAX = 20 * A + 30 * C;

A <= 60;
C <= 50;
A+ 2 * C <= 120;
Optimal solution found at step: 1
Objective value: 2100.000
Variable Value Reduced Cost
A 60.00000 0.0000000
C 30.00000 0.0000000
Row Slack or Surplus Dual Price
1 2100.000 1.000000
2 0.0000000 5.000000
3 20.00000 0.0000000
4 0.0000000 15.00000
Right-hand Side Ranges
Row Current Allowable Allowable
RHS Increase Decrease
2 60.00000 60.00000 40.00000
3 50.00000 INFINITY 20.00000
4 120.0000 40.00000 60.00000

4. The Bug product has a profit contribution of $4100 per unit and requires 4 hours in the foundry
department and 2 hours in the assembly department. The SuperBug has a profit contribution of
$5900 per unit and requires 2 hours in the foundry and 3 hours in assembly. The availabilities in
foundry and assembly are 160 hours and 180 hours, respectively. Each hour used in each of
foundry and assembly costs $90 and $60, respectively. The following is an LP formulation for
maximizing profit contribution in this situation:

MAX = 4100 * B + 5900 * S - 90 * F - 60 * A;

4 * B + 2 * S - F = 0;
2 * B + 3 * S - A = 0;
F <= 160;

A <= 180;

50 Chapter 3 Analyzing Solutions

Following is an optimal solution report printed on a typewriter that skipped some sections of
the report.

Objective value:

Variable Value Reduced Cost
B 73.33325

S 60.00000
F 120.0000 0.0000000
A 180.0000 0.0000000
Row Slack or Surplus Dual Price
1 332400.0 1.000000

2 0.0000000
3 1906.667
4 0.0000000
5 0.0000000 1846.667

Fill in the missing parts, using just the available information (i.e., without re-solving the model on
the computer).

5. Suppose the capacities in the Enginola problem were: Astro line capacity =45; labor
capacity = 100.

(a) Allow the labor capacity to vary from 0 to 200 and plot:

e Dual price of labor as a function of labor capacity.
o Total profit as a function of labor capacity.

(b) Allow the profit contribution/unit of Astros to vary from 0 to 50 and plot:

e Number of Astros to produce as a function of profit/unit.
e Total profit as a function of profit/unit.

6. Write the dual problem of the following problem:

Minimize 12¢g + 5r+ 3s

subjectto g+2r+ 4s>6
5¢+6r— 7s<5
8¢ —-9r+11s=10

7. The energetic folks at Enginola, Inc. have not been idle. The R & D department has given some
more attention to the proposed digital recorder product (code name R) and enhanced it so much
that everyone agrees it could be sold for a profit contribution of $79 per unit. Unfortunately, its
production still requires one unit of capacity on both the A(stro) and C(osmo) lines. Even worse, it
now requires four hours of labor. The Marketing folks have spread the good word about the Astro
and Cosmo products, so a price increase has been made possible. Industrial Engineering has been
able to increase the capacity of the two lines. The new ex-marine heading Human Resources has
been able to hire a few more good people, so the labor capacity has increased to 135 hours. The
net result is that the relevant model is now:

MAX = 23 * A + 38 * C + 79 * R;
A + R <= 75;
C + R <= 65;
A+ 2 * C+ 4 * R <= 135;
END

Analyzing Solutions Chapter 3 51

Without resorting to a computer, answer the following questions, supporting each answer with a
one- or two-sentence economic argument that might be understood by your spouse or “significant

other.”

(a)
(b)
(©
(d)
(e)
&)

How many A4’s should be produced?

How many C’s should be produced?

How many R’s should be produced?

What is the marginal value of an additional hour of labor?

What is the marginal value/unit of additional capacity on the 4 line?
What is the marginal value per unit of additional capacity on the C line?

52 Chapter 3 Analyzing Solutions

4

The Model Formulation
Process

Count what is countable, measure what is measurable, and
what is not measurable, make measurable.
Galileo Galilei(1564-1642)

4.1 The Overall Process
In using any kind of analytical or modeling approach for attacking a problem, there are five major
steps:

1) Understanding the real problem.

2) Formulating a model of the problem.

3) Gathering and generating the input data for the model (e.g., per unit costs to be used,

etc.).
4) Solving or running the model.
5) Implementing and interpreting the solution in the real world.

In general, there is a certain amount of iteration over the five (e.g., one does not develop the most
appropriate model the first time around). Of the above, the easiest is the solving of the model on the
computer. This is not because it is intrinsically easiest, but because it is the most susceptible to
mathematical analysis. Steps 1, 3, and 5 are, if not the most difficult, at least the most time consuming.
Success with these steps depends to a large extent upon being very familiar with the organization
involved (e.g., knowing who knows what the real production rate is on the punch press machine). Step
2 requires the most analytical skill. Steps 1 and 5 require the most people skills.

Formulating good models is an art bordering on a science. The artistic ability is in developing
simple models that are nevertheless good approximations of reality. We shall see that there are a
number of classes of problems that are well approximated by optimization models.

With all of the above comments in mind, we will devote most of the discussion to formulation of
optimization models, stating what universal truths seem to apply for steps (3) and (5), and giving an
introduction to the mechanics of step (4).

53

54 Chapter 4 The Model Formulation Process

4.2 Approaches to Model Formulation

We take two approaches to formulating models:

1) Template approach,
2) Constructive approach.

The constructive approach is the more fundamental and general. However, readers with less
analytic skill may prefer the template approach. The latter is essentially a “model in a can” approach.
In this approach, examples of standard applications are illustrated in substantial detail. If you have a
problem that closely resembles one of these “template” models, you may be able to adjust it to your
situation by making modest changes to the template model. The advantage of this approach is that the
user may not need much technical background if there is a template model that closely fits the real
situation.

4.3 The Template Approach

You may feel more comfortable and confident in your ability to structure problems if you have a
classification of “template” problems to which you can relate new problems you encounter. We will
present a classification of about a half dozen different categories of problems. In practice, a large real
problem you encounter will not fit a single template model exactly, but might require a combination of
two or more of the categories. The classification is not exhaustive, so you may encounter or develop
models that seem to fit none of these templates.

4.3.1 Product Mix Problems

Product mix problems are the problem types typically encountered in introductory LP texts. There are
a collection of products that can be sold and a finite set of resources from which these products are
made. Associated with each product are a profit contribution rate and a set of resource usage rates. The
objective is to find a mix of products (amount of each product) that maximizes profit, subject to not
using more resources than are available.

These problems are always of the form “Maximize profit subject to less-than-or-equal-to
constraints”.

4.3.2 Covering, Staffing, and Cutting Stock Problems

Covering, staffing, and cutting stock problems are complementary (in the jargon, they are called dual)
to product mix problems in that their form is “Minimize cost subject to greater-than-or-equal-to
constraints”. The variables in this case might correspond to the number of people hired for various
shifts during the day. The constraints arise from the fact that the mix of variables chosen must “cover”
the requirements during each hour of the day.

4.3.3 Blending Problems

Blending problems arise in the food, feed, metals, and oil refining industries. The problem is to mix or
blend a collection of raw materials (e.g., different types of meats, cereal grains, or crude oils) into a
finished product (e.g., sausage, dog food, or gasoline). The cost per unit of the finished product is
minimized and it is subject to satisfying certain quality constraints (e.g., percent protein > 15 percent).

The Model Formulation Process Chapter4 55

4.3.4 Multiperiod Planning Problems

Multiperiod planning problems constitute perhaps the most important class of models. These models
take into account the fact that the decisions made in this period partially determine which decisions are
allowable in future periods. The submodel used each period may be a product mix problem, a blending
problem, or some other type. These submodels are usually tied together by means of inventory
variables (e.g., the inventory of raw materials, finished goods, cash, or loans outstanding) that are
carried from one period to the next.

4 3.5 Network, Distribution, and PERT/CPM Models

Network LP models warrant special attention for two reasons: (a) they have a particularly simple form,
which makes them easy to describe as a graph or network, and (b) specialized and efficient solution
procedures exist for solving them. They, therefore, tend to be easier to explain and comprehend.
Network LPs frequently arise from problems of product distribution. Any enterprise producing a
product at several locations and distributing it to many customers may find a network LP relevant.
Large problems of this type may be solved rapidly by the specialized procedures.

One of the simplest network problems is finding the shortest route from one point in a network to
another. A slight variation on this problem, finding the longest route, happens to be an important
component of the project management tools PERT (Program Evaluation and Review Technique) and
CPM (Critical Path Method).

Close cousins of network models are input/output and vertically integrated models. General
Motors, for example, makes engines in certain plants. These engines might be sold directly to
customers, such as industrial equipment manufacturers, or the engines may be used in GM’s own cars
and trucks. Such a company is said to be vertically integrated. In a vertically integrated model, there is
usually one constraint for each type of intermediate product. The constraint mathematically enforces
the basic law of physics that the amount used of an intermediate product by various processes cannot
exceed the amount of this product produced by other processes. There is usually one decision variable
for each type of process available.

If one expands one’s perspective to the entire economy, then the models considered tend to be
similar to the input/output model popularized by Wassily Leontief (1951). Each industry is described
by the input products required and the output products produced. These outputs may in turn be inputs
to other industries. The problem is to determine appropriate levels at which each industry should be
operated in order to satisfy specific consumption requirements.

4.3.6 Multiperiod Planning Problems with Random Elements

One of the fundamental assumptions of optimization models is that all input data are known with
certainty. There are situations, however, where certain key data are highly random. For example, when
an oil company makes its fuel oil production decisions for the coming winter, the demand for that fuel
oil is very much a random variable. If, however, the distribution probabilities for all the random
variables are known, then there is a modeling technique for converting a problem that is an
optimization model, except for the random elements, into an equivalent, although possibly larger,
deterministic optimization model. Such models are sometimes called stochastic programs.

4.3.7 Financial Portfolio Models

An important application of optimization in the last ten years has been in the design of financial
investment portfolios. In its simplest form, it is concerned with how much to invest in a collection of
risky investments, so that a good compromise is struck between a high expected return and a low risk.

56 Chapter 4 The Model Formulation Process

More complicated applications of this idea are concerned with investing so as to track some popular
financial index, such as the S&P 500.

4.3.8 Game Theory Models

Game theory is concerned with the analysis of competitive situations. In its simplest form, a game
consists of two players, each of whom has available to them a set of possible decisions. Each player
must choose a strategy for making a decision in ignorance of the other player’s choice. Some time after
a decision is made, each player receives a payoff that depends on which combination of decisions was
made. The problem of determining each player’s optimal strategy can be formulated as a linear
program.

Not all problems you encounter will fit into one of the above categories. Many problems will be
combinations of the above types. For example, in a multiperiod planning problem, the single period
subproblems may be product mix or blending problems.

4.4 Constructive Approach to Model Formulation
The constructive approach is a set of guidelines for constructing a model from the ground up. This
approach requires somewhat more analytical skill, but the rules apply to any situation you are trying to
model. The odds are low you will find a template model that exactly matches your real situation. In
practice, a combination of these two approaches is needed.

For the constructive approach, we suggest the following three-step approach for constructing a
model, which, with apologies to Sam Savage, might be called the ABC’s of modeling:

A. Identify and define the decision variables or Adjustable cells. Defining a decision
variable includes specifying the units in which it is measured (e.g., tons, hours, etc.). One
way of trying to deduce the decision variables is to ask the question: What should be the
format of a report that gives a solution to this problem? (For example, the numbers that
constitute an answer are: the amount to produce of each product and the amount to use of
each ingredient.) The cells in this report are the decision variables.

B. Define how we measure Best. More officially, define our objective or criterion function,
including the units in which it is measured. Among useable or feasible solutions, how
would preference/goodness (e.g., profit) be measured?

C. Specify the Constraints, including the units in which each is measured. A way to think
about constraints is as follows: Given a purported solution to a problem, what numeric
checks would you perform to check the validity of the solution?

The majority of the constraints in most problems can be thought of as sources-equals-uses
constraints. Another common kind of constraint is the definitional or accounting constraint. Sometimes
the distinction between the two is arbitrary. Consider a production setting where we: i) start with some
beginning inventory of some commodity, ii) produce some of that commodity, iii) sell some of the
commodity, and iv) leave some of the commodity in ending inventory. From the sources-equals-uses
perspective, we might write:

beginning inventory + production = sales + ending inventory.

From the definitional perspective, if we were thinking of how ending inventory is defined, we
would write:

ending inventory = (beginning inventory + production) — sales.

The Model Formulation Process Chapter4 57

The two perspectives are in fact mathematically equivalent.
For any application, it is useful to do each of the above in words first. In order to illustrate these
ideas, consider the situation in the following example.

4.4.1 Example

Deglo Toys has been manufacturing a line of precision building blocks for children for a number of
years. Deglo is faced with a standard end-of-the-year problem known as the build-out problem. It is
about to introduce a new line of glow-in-the-dark building blocks. Thus, they would like to deplete
their old-technology inventories before introducing the new line. The old inventories consist of 19,900
4-dimple blocks and 29,700 8-dimple blocks. These inventories can be sold off in the form of two
different kits: the Master Builder and the Empire Builder. The objective is to maximize the revenue
from the sale of these two kits. The Master kit sells for $16.95, and the Empire kit sells for $24.95. The
Master kit is composed of 30 4-dimple blocks plus 40 8-dimple blocks. The Empire kit is composed of
40 4-dimple blocks plus 85 8-dimple blocks. What is an appropriate model of this problem?

4.4.2 Formulating Our Example Problem
The process for our example problem would be as follows:

a) The essential decision variables are:
M = number of master builder kits to assemble and
E = number of empire builder kits to assemble.
b) The objective function is to maximize sales revenue (i.e., Maximize 16.95 M+ 24.95E).
c) Ifsomeone gave us a proposed solution (i.e., values for M and E), we would check its
feasibility by checking that:
i. the number of 4-dimple blocks used < 19,900 and
ii. the number of 8-dimple blocks used < 29,700.

Symbolically, or algebraically, this is:

30M + 40E < 19,900
40M + 85E < 29,700

In LINGO form, the formulation is:

MAX = 16.95 * M + 24.95 * E;
30 * M + 40 * E <= 19900;
40 * M + 85 * E <= 29700;

with solution:

Optimal solution found at step: 0
Objective value: 11478.50
Variable Value Reduced Cost
M 530.0000 0.0000000
E 100.0000 0.0000000
Row Slack or Surplus Dual Price
1 11478.50 1.000000
2 0.0000000 0.4660526
3 0.0000000 0.7421052E-01

Thus, we should produce 530 Master Builders and 100 Empire Builders.

58 Chapter 4 The Model Formulation Process

4.5 Choosing Costs Correctly
Choosing costs and profit contribution coefficients in the objective requires some care. In many firms,
cost data may not be available at the detailed level required in an optimization model. If available, the
“official” cost coefficients may be inappropriate for the application at hand.

The basic rule is fairly simple: The cost coefficient of a variable should be the rate of change of
the total cost as the variable changes. We will discuss the various temptations to violate this rule. The
two major temptations are sunk costs and joint costs.

4.5.1 Sunk vs. Variable Costs

A sunk cost is a cost that has already been incurred or committed to, although not necessarily paid. A
variable cost is a cost that varies with some activity level. Sunk costs should not appear in any
coefficient of a decision variable. Whether a cost is sunk or variable depends closely upon the length
of our planning horizon. A general rule is that: In the short run, all costs are sunk, while all costs are
variable in the long run. The following example illustrates.

Sunk and Variable Cost Example
A firm prepared a profit contribution table for two of its products, X and Y:

Product: XY
Selling price/unit $1000 $1000
Material cost/unit $200 $300
Labor cost/unit $495 $300

Net Profit contribution $305 $400

These two products use a common assembly facility that has a daily capacity of 80 units. Product
specific production facilities limit the daily production of X to 40 units and Y to 60 units. The hourly
wage in the company is $15/ hour for all labor. The obvious model is:

Max = 305 * X + 400 * Y;

X <= 40;
Y <= 60;
X + Y <= 80;

The solution is to produce 60 ¥’s and 20 X’s. At $15 per hour, the total labor required by this

solution is 20 X 495/15 + 60 x 300/15 = 1860 hours per day.

Now, let us consider some possible additional details or variations of the above situation. Some
firms, such as some automobile manufacturers, have had labor contracts that effectively guarantee a
job to a fixed number of employees during the term of the contract (e.g., one year). If the above model
is being used to decide how many employees to hire and commit to before signing the contract, then
the $15/hour used above is perhaps appropriate, although it may be too low. In the U.S., the employer
also must pay Social Security and Medicare taxes that add close to 8% to the labor bill. In addition, the
employer typically also covers the cost of supplemental health insurance for the employee, so the cost
of labor is probably closer to $20 per hour rather than $15.

The Model Formulation Process Chapter4 59

Once the contract is signed, however, the labor costs then become sunk, but we now have a
constraint that we can use at most 1860 hours of labor per day. The variable profit contributions are
now:

Product: xX Y
Selling price/unit $1000 $1000
Material cost/unit $200 $300

Net Profit contribution $800 $700

Now, X is the more profitable product. Before we jump to the conclusion that we should now
produce 40 X’s and 40 Y’s, we must recall that labor capacity is now fixed. The proper, short term,
model is now:

Max = 800 * X 4+ 700 * Y;

X <= 40;
Y <= 60;
X + Y <= 80;
33 * X + 20 * Y <= 1860;
with solution:
Optimal solution found at step: 1
Objective value: 58000.00
Variable Value Reduced Cost
X 20.00000 0.0000000
Y 60.00000 0.0000000
Row Slack or Surplus Dual Price
1 58000.00 1.000000
2 20.00000 0.0000000
3 0.0000000 215.1515
4 0.0000000 0.0000000
5 0.0000000 24.24242

Therefore, we still produce the same mix of products.

Now, suppose in order to be competitive, the selling price of X must be dropped by $350 to $650.
Also, we still have our labor contract that says we may use up to and must pay for all of 1860 hours of
labor per day. The correct model is:

Max = 450 * X + 700 * Y;

X <= 40;
Y <= 60;
X + Y <= 80;

33 # X + 20 * Y <= 1860;

with still the same solution of X = 20 and ¥ = 60. If we (incorrectly) charge for labor, however, the
model is:

Max = - 45 * X + 400 * Y;
X <= 40;
Y <= 60;
X + Y <= 80;

33 * X+ 20 * Y <= 1860;

and we would incorrectly conclude that X should not be produced.

60 Chapter 4 The Model Formulation Process

There are many planning situations similar to the above. For example, an airline or a trucking firm
may use essentially the same model for long-range fleet sizing decisions as for daily fleet routing
decision. When solving the long-term fleet sizing decision, the cost of capital should be included in the
daily cost of having a vehicle. On the other hand, when making short-run routing decisions, the cost of
capital should not be included in the daily cost of a vehicle. However, the number of vehicles used is
constrained to be no greater than the fleet size chosen in the long-term plan. Only operating costs that
vary with the amount of usage of the vehicle should be included when solving the short-term model.

4.5.2 Joint Products

We say we have joint products or byproducts if a single process produces several products. The key
feature is that, if you run the process in question, you unavoidably get some amount of each of the
joint products. Some examples are:

Process Joint Products

Crude o1l distillation gasoline, oil, kerosene, tar

Raw milk processing whole milk, skim milk, 2%, cream, yogurt
Meat processing light meat, dark meat, steak, chuck roast
Semi-conductor manufacturing high speed chips, low speed chips

Mining of precious metal ore gold, silver, copper

Sales calls sales of various products in product line

There is a temptation, perhaps even a requirement by taxing authorities, that the cost of the joint
process be fully allocated to the output products. The important point is that, for decision-making
purposes, this allocation serves no purpose. It should be avoided. The proper way to model a joint
product process is to have a separate decision variable for each output product, and a decision variable
for the joint production process. Costs and revenues should be applied to their associated decision
variables (e.g., the cost of distillation should be associated with the decision variable of how much
crude to distill). The fact that, if you want to produce gasoline, then you must incur the cost of
distillation is taken care of by the constraints. Let us illustrate with an example.

Joint Cost Example

The Chartreuse Company (CC) raises pumpkins. It costs $800 to plant, harvest and sort a ton of raw
pumpkins. CC has capacity to plant and harvest 150 tons of pumpkins. In spite of CC’s best efforts at
genetic engineering, harvested pumpkins fall equally into three classes of pumpkins of increasing
quality: Good, Premium, and Exquisite. Once sorted, it costs $100 per ton to get each of the classes
ready for market. Alternatively, pumpkins from any class can be discarded at zero additional cost.
Prices have dropped recently, so there is concern about whether it is profitable to sell all grades of
pumpkins. Current selling prices per ton for the three grades are: $700, $1100, and $2200. How much
should be processed and sold of each grade?

A proper model is:

MAX = (700 - 100)* G + (1100 - 100) * P + (2200 -
100)* E - 800 * R;

R <= 150;

G <= .3333333 * R;

P <= .3333333 * R;

E <= .3333333 * R;

The Model Formulation Process Chapter4 61

With solution:

Optimal solution found at step: 0
Objective value: 65000.0

Variable Value Reduced Cost

G 50.00000 0.0000000

P 50.00000 0.0000000

E 50.00000 0.0000000

R 150.0000 0.0000000

Row Slack or Surplus Dual Price

1 65000.00 1.000000

2 0.0000000 433.3333

3 0.0000000 600.0000

4 0.0000000 1000.000

5 0.0000000 2100.000

There is a temptation to allocate the cost of planting, harvesting and sorting, over all three grades
to get the model:

MAX = (700 - 100 - 2400/3) * G + (1100 - 100 -
2400/3) * P + (2200 - 100 - 2400/3) * E ;

G <= .333333 * 150;
P <= .333333 * 150;
E <= .333333 * 150;

Given their (apparent) negative profit contribution in the above model, good pumpkins will not be
produced. If we then allocate the planting, harvesting, and sorting costs over just P and E, we get:

MAX = (1100 - 100 - 2400/2) * P + (2200 - 100 -
2400/2) * E;

G <= .333333 * 150;
P <= .333333 * 150;
E <= .333333 * 150;

Now, of course, Premium grade is not worth producing. This leaves the Exquisite grade to carry
the full cost of planting, harvesting, and sorting, and then we see it is not worth producing. Thus, even
though we started with a profitable enterprise, blind use of allocation of joint costs caused us to quit
the profitable business. The moral to the story is to not do cost allocation.

4.5.3 Book Value vs. Market Value

A common problem in formulating an optimization model for decisionmaking is what cost should be
attached to product that is used from inventory. A typical accounting system will carry a book value
for product in inventory. The temptation is to use this readily available number as the cost of using
product from inventory. For example, suppose you are a gasoline distributor who bought 10,000
gallons of Regular gasoline last month for $2.77 per gallon. Due to unforeseen events, this month you
still have 5,000 gallons of that Regular gasoline in inventory. Now the market price for Regular
gasoline has dropped to $2.70 per gallon, and you are contemplating your production and market
operations for this month. How much should you charge yourself for the use of this Regular in
inventory? One person might argue that the purchase is now a sunk cost so we should charge
ourselves 0. Others might argue that proper “Accounting” says we should charge the book value,
$2.77/gallon. Which is it? The simple quick answer is that for decision making purposes, book value
should always be disregarded, except when required by law for the calculation of taxes. Material in

62 Chapter 4 The Model Formulation Process

inventory should be treated as having zero cost, however, you should completely enumerate all
possible options of what you can do with this inventory, including selling it on the open market.

It helps to clarify issues by completing all the details for our little example and explicitly defining
decision variables for all the possible actions available. You can buy or sell Regular in unlimited
amounts this month for $2.70/gallon, however, it costs you $0.01/gallon in transportation and
transaction costs for any gasoline you buy to get it onto your property. Similarly, for any gasoline you
sell, there is a transaction cost of $0.02 per gallon. What can be done with Regular gasoline? It can
be sold directly, or it can be blended in equal proportions with Premium gasoline to produce Midgrade
gasoline. You have one customer who is willing to pay $2.82/gallon of Midgrade delivered to his door
for up to 6000 gallons, and a second customer who is willing to pay $2.80/gallon of Midgrade
delivered to his door for up to 8000 gallons. Premium gasoline can be purchased in unlimited amounts
for $2.90/gallon. What should we do with our Regular gasoline: nothing, sell it back to the market,
buy some Premium to blend with Regular (perhaps even buying more Regular) to sell to customer 1,
to customer 2? Following the ABC’s of optimization, step A is to define our decision variables: RB =
gallons of additional Regular gasoline bought on the market this month, RS = gallons of Regular
directly sold on the market this month, PB = gallons of Premium bought, MS1 = gallons of Midgrade
sold to customer 1, and MS2 = gallons of Midgrade sold to customer 2. Step B, the objective function
is to maximize revenues minus costs. Step C is to specify the constraints. The two main constraints
are the “Sources EQual Uses” constraints for Regular and Premium. A formulation is given below.
Recall that a gallon of Midgrade uses a half gallon of Regular and half gallon of Premium. To make
the solution report easier to understand, we have given a [row name] to each constraint.

!Maximize revenues — costs;
MAX = (2.70 - .02)*RS + (2.82 - .02)*MS1 + (2.80-.02)*MS2
- (2.70 + .01)*RB - (2.90 + .01)*PB;
!Sources = uses for Regular and Premium;
[SEQUR] 5000 + RB = RS + .5*(MS1 + MS2);
[SEQUP] PB = .5* (MS1 + MS2);
!Upper limits on amount we can sell;
[UL1] MS1 <= 6000;
[UL2] MS2 <= 8000;

Notice there is no explicit charge for Regular in inventory. The book value of $2.77 appears nowhere
in the formulation. Inventory is treated as a sunk cost or free good, however, we have included the
option to sell it directly. Thus, using Regular to blend Midgrade must compete with simply selling the
Regular directly at the current market price. A solution is:

Objective value: 13430.00

Variable Value Reduced Cost
RS 2000.000 0.000000

MS1 6000.000 0.000000

MS2 0.000 0.015000

RB 0.000 0.030000

PB 3000.000 0.000000

Row Slack or Surplus Dual Price

1 13430.000 1.000000

SEQUR 0.000 -2.680000
SEQUP 0.000 -2.910000

ULl 0.000 0.005000

The Model Formulation Process Chapter4 63

UL2 8000.000 0.000000

Thus, it is more profitable to blend the Regular inventory with Premium to sell it to customer 1
than to sell it directly to the market, however, selling Regular directly back to the market is more
profitable than selling to customer 2 blended into Midgrade.

4.6 Common Errors in Formulating Models

When you develop a first formulation of some real problem, the formulation may contain errors or
bugs. These errors will fall into the following categories:

A. Simple typographical errors;
B. Fundamental errors of formulation;
C. Errors of approximation.

The first two categories of errors are easy to correct once they are identified. In principle, category
A errors are easy to identify because they are clerical in nature. In a large model, however, tracking
them down may be a difficult search problem. Category B errors are more fundamental because they
involve a misunderstanding of either the real problem or the nature of LP models. Category C errors
are subtler. Generally, a model of a real situation involves some approximation (e.g., many products
are aggregated together into a single macro-product, the days of a week are lumped together, or costs
that are not quite proportional to volume are nevertheless treated as linear). Avoiding category C errors
requires skill in identifying which approximations can be tolerated.

With regard to category A errors, if the user is fortunate, category A errors will manifest
themselves by causing solutions that are obviously incorrect.

Errors of formulation are more difficult to discuss because they are of many forms. Doing what
we call dimensional analysis can frequently expose the kinds of errors made by a novice. Anyone who
has taken a physics or chemistry course would know it as “checking your units.” Let us illustrate by
considering an example.

A distributor of toys is analyzing his strategy for assembling Tinkertoy sets for the upcoming
holiday season. He assembles two kinds of sets. The “Big” set is composed of 60 sticks and 30
connectors, while the “Tot” set is composed of 30 sticks and 20 connectors. An important factor is, for
this season, he has a supply of only 60,000 connectors and 93,000 sticks. He will be able to sell all that
he assembles of either set. The profit contributions are $5.5 and $3.5 per set, respectively, for Big and
Tot. How much should he sell of each set to maximize profit?

The distributor developed the following formulation. Define:

B = number of Big sets to assemble;

T = number of Tot sets to assemble;

S = number of sticks actually used;

C = number of connectors actually used.

MAX = 5.5 * B + 3.5 * T;

B-30*C-=-260*S5 =0;
T -20*C-30*S = 0;
C <= 60000;

S <= 93000;

64 Chapter 4 The Model Formulation Process

Notice the first two constraints are equivalent to:

B=30C+60S
T=20C+ 308
Do you agree with the formulation? If so, you should analyze its solution below:
Optimal solution found at step: 0
Objective value: 0.5455500E+08
Variable Value Reduced Cost
B 7380000. 0.0000000
T 3990000. 0.0000000
C 60000.00 0.0000000
S 93000.00 0.0000000
Row Slack or Surplus Dual Price
1 0.5455500E+08 1.000000
2 0.0000000 5.500000
3 0.0000000 3.500000
4 0.0000000 235.0000
5 0.0000000 435.0000

There is a hint that the formulation is incorrect because the solution is able to magically produce
almost four million Tot sets from only 100,000 sticks.

The mistake that was made is a very common one for newcomers to LP, namely, trying to
describe the features of an activity by a constraint. A constraint can always be thought of as a
statement that the usage of some item must be less-than-or-equal-to the sources of the item. The last
two constraints have this characteristic, but the first two do not.

If one analyzes the dimensions of the components of the first two constraints, one can see there is
trouble. The dimensions (or “units”) for the first constraint are:

Term Units

B Big sets

30C 30 [connectors/(Big set)] x connectors
60 S 60 [sticks/(Big set)] x sticks

Clearly, they have different units, but if you are adding items together, they must have the same
units. It is elementary that you cannot add apples and oranges. The units of all components of a
constraint must be the same.

If one first formulates a problem in words and then converts it to the algebraic form in LINGO,
one frequently avoids the above kind of error. In words, we wish to:

Maximize profit contribution

Subject to:
Usage of connectors < sources of connectors
Usage of sticks < sources of sticks

Converted to algebraic form in LINGO, it is:

MAX = 5.5 * B + 3.5 * T;
30 * B+ 20 * T <
60 * B+ 30 * T <

60000;
93000;

The Model Formulation Process Chapter4 65

The units of the components of the constraint 30 B + 20 7'< 60,000 are:

Term Units
30B 30 [connectors/(Big set)] x (Big set) = 30 connectors

20T 20 [connectors/(Tot set)] x (Tot set) = 20 connectors
60,000 60,000 connectors available

Thus, all the terms have the same units of “connectors”. Solving the problem, we obtain the
sensible solution:

Optimal solution found at step: 0
Objective value: 10550.00
Variable Value Reduced Cost
B 200.0000 0.0000000
T 2700.000 0.0000000
Row Slack or Surplus Dual Price
1 10550.00 1.000000
2 0.0000000 0.1500000
3 0.0000000 0.1666667E-01

4.7 The Nonsimultaneity Error

It must be stressed that all the constraints in an LP formulation apply simultaneously. A combination
of activity levels must be found that simultaneously satisfies all the constraints. The constraints do not
apply in an either/or fashion, although we might like them to be so interpreted. As an example,
suppose we denote by B the batch size for a production run of footwear. A reasonable policy might be,
if a production run is made, at least two dozen units should be made. Thus, B will be either zero or
some number greater-than-or-equal-to 24. There might be a temptation to state this policy by writing
the two constraints:

B<0
B>24.

The desire is that exactly one of these constraints be satisfied. If these two constraints are part of
an LP formulation, the computer will reject such a formulation with a curt remark to the effect that no
feasible solution exists. There is no unique value for B that is simultaneously less-than-or-equal-to zero
and greater-than-or-equal-to 24.

If such either/or constraints are important, then one must resort to integer programming. Such
formulations will be discussed in a later section.

66 Chapter 4 The Model Formulation Process

4.8 Problems

1.

The Tiny Timber Company wants to utilize best the wood resources in one of its forest regions.
Within this region, there is a sawmill and a plywood mill. Thus, timber can be converted to
lumber or plywood.

Producing a marketable mix of 1000 board feet of lumber products requires 1000 board feet
of spruce and 4000 board feet of Douglas fir. Producing 1000 square feet of plywood requires
2000 board feet of spruce and 4000 board feet of Douglas fir. This region has available 32,000
board feet of spruce and 72,000 board feet of Douglas fir.

Sales commitments require at least 5000 board feet of lumber and 12,000 square feet of
plywood be produced during the planning period. The profit contributions are $45 per 1000 board
feet of lumber products and $60 per 1000 square feet of plywood. Let L be the amount (in 1000
board feet) of lumber produced and let P be the amount (in 1000 square feet) of plywood
produced. Express the problem as a linear programming model.

Shmuzzles, Inc., is a struggling toy company that hopes to make it big this year. It makes three
fundamental toys: the Shmacrobat, the Shlameleon, and the JigSaw Shmuzzle. Shmuzzles is trying
to unload its current inventories through airline in-flight magazines by packaging these three toys
in two different size kits, the Dilettante Shmuzzler kit and the Advanced Shmuzzler kit. It’s
$29.95 for the Dilettante, whereas the Advanced sells for $39.95. The compositions of these two
kits are:

Dilettante = 6 Shmacrobats plus 10 Shlameleons plus 1 Jig Saw
Advanced = 8 Shmacrobats plus 18 Shlameleons plus 2 Jig Saws

Current inventory levels are: 6,000 Shmacrobats, 15,000 Shlameleons, and 1,500 JigSaws.
Formulate a model for helping Shmuzzles, Inc., maximize its profits.

A standard problem encountered by many firms when introducing new products is the "phase-out"
problem. Given the components for products that are being phased out, the question is: what
amounts of the phased out products should be built so as to most profitably use the available
inventory. The following illustrates. The R. R. Bean Company produces, packages, and distributes
freeze-dried food for the camping and outdoor sportsman market. R. R. Bean is ready to introduce
a new line of products based on a new drying technology that produces a higher quality, tastier
food. The basic ingredients of the current (about to be discontinued) line are dried fruit, dried meat
and dried vegetables. There are two products in the current (to be phased out) line: the
"Weekender" and the "ExpeditionPak". In its "close-out" catalog, the selling prices of the two
products are $3.80 and $7.00 per package, respectively. Handling and shipping costs are $1.50 per
package for each package. It is R. R. Bean's long standing practice to include shipping and
handling at no charge. The "Weekender" package consists of 3 ounces of dried fruit, 7 ounces of
dried meat, and 2 ounces of dried vegetables. The makeup of the "ExpeditionPak" package is 5
ounces of dried fruit, 18 ounces of dried meat, and 5 ounces of dried vegetables. R. R. Bean would
like to deplete, as most profitably as possible, its inventories of "old technology" fruit, meat, and
vegetables before introducing the new line. The current inventories are 10,000 ounces, 25,000
ounces, and 12,000 ounces respectively of fruit, meat, and vegetables. The book values of these
inventories are $2000, $2500, and $1800. Any leftover inventory will be given to the local animal
shelter at no cost or benefit to R. R. Bean. The prices in the catalog are such that R. R. Bean is
confident that it can sell all that it makes of the two products. Formulate and solve an LP that

The Model Formulation Process Chapter4 67

should be useful in telling R.R. Bean how many “Weekender” and “Expedition Pak” packages
should be mixed to maximize profits from its current inventories.

Quart Industries produces a variety of bottled food products at its various plants. At its Americus
plant, it produces two products, peanut butter and apple butter. There are two scarce resources at
this plant: packaging capacity and sterilization capacity. Both have a capacity of 40 hours per
week. Production of 1000 jars of peanut butter requires 4 hours of sterilizer time and 5 hours of
packaging time, whereas it takes 6 hours of sterilizer time and 4 hours of packaging time to
produce 1000 jars of apple butter. The profit contributions per 1000 jars for the two products are
$1100 and $1300, respectively. Apple butter preparation requires a boil-down process best done in
batches of at least 5000 jars. Thus, apple butter production during the week should be either 0, or
5000 or more jars. How much should be produced this week of each product?

An important skill in model formulation is the ability to enumerate all alternatives. Scott
Wilkerson is a scientist-astronaut aboard a seven-day space shuttle mission. In spite of a modest
health problem that is aggravated by the zero gravity of space, Scott has been allowed on the
mission because of his scientific skills and because a pharmaceutical company has prepared a set
of two types of pills for Scott to take each day to alleviate his medical condition. At the beginning
of each day Scott is to take exactly one type X pill and exactly one type Y pill. If he deviates from
this scheme, it will be life threatening for him and the shuttle will have to be brought down
immediately. On the first day of the mission, Scott gets one type X pill out of the X bottle, but in
the process of trying to get a pill out of the Y bottle, two come out. He grasps for them
immediately with the hand that has the X pill and now he finds he has three pills in his hand.
Unfortunately, the X and Y pills are indistinguishable. Both types look exactly like a standard
aspirin. There are just enough pills for the full length mission, so none can be discarded. What
should Scott do? (Hint: this problem would be inappropriate in the integer programming chapter.)

68 Chapter 4 The Model Formulation Process

5

The Sets View of the World

In Normal form, each attribute/field of an entity/record should depend on
the entity key, the whole key, and nothing but the key, so help me Codd.
-anonymous

5.1 Introduction

The most powerful feature of LINGO is its ability to model large systems. The key concept that
provides this power is the idea of a set of similar objects. When you are modeling situations in real
life, there will typically be one or more groups of similar objects. Examples of such groups might be
factories, products, time periods, customers, vehicles, employees, etc. LINGO allows you to group
similar objects together into sets. Once the objects in your model are grouped into sets, you can make
single statements in LINGO that apply to all members of a set.

A LINGO model of a large system will typically have three sections: 1) a SETS section, 2) a
DATA section, and 3) a model equations section. The SETS section describes the data structures to be
used for solving a certain class of problems. The DATA section provides the data to “populate” the
data structures. The model equations section describes the relationships between the various pieces of
data and our decisions.

5.1.1 Why Use Sets?

In most large models, you will need to express a group of several very similar calculations or
constraints. LINGO’s ability to handle sets allows you to express such formulae or constraints
efficiently.

For example, preparing a warehouse-shipping model for 100 warehouses would be tedious if you
had to write each constraint explicitly (e.g., “Warehouse 1 can ship no more than its present inventory,
Warehouse 2 can ship no more than its present inventory, Warehouse 3 can ship no more than its
present inventory...” and so on). You would prefer to make a single general statement of the form:
“Each warehouse can ship no more than its present inventory”.

5.1.2 What Are Sets?

A set is a group of similar objects. A set might be a list of products, trucks, employees, etc. Each
member in the set may have one or more characteristics associated with it (e.g., weight, price/unit, or
income). We call these characteristics attributes. All members of the same set have the same set of
attribute types. Attribute values can be known in advance or unknowns for which LINGO solves. For
example, each product in a set of products might have an attribute listing its price. Each truck in a set

69

70 Chapter 5 The Sets View of the World

of trucks might have a hauling capacity attribute. In addition, each employee in a set of employees
might have an attribute specifying salary as well as an attribute listing birth date.

5.1.3 Types of Sets
LINGO recognizes two kinds of sets: primitive and derived. A primitive set is a set composed only of
objects that can’t be further reduced.

A derived set is defined from one or more other sets using two operations: a) selection (of a
subset), and/or b) Cartesian product (sometimes called a “cross” or a “join”) of two or more other sets.
The key concept is that a derived set derives its members from other pre-existing sets. For example, we
might have the two primitive sets: WAREHOUSE and CUSTOMER. We might have the derived set
called SHIPLINK, which consists of every possible combination of a warehouse and a customer.
Although the set SHIPLINK is derived solely from primitive sets, it is also possible to build derived
sets from other derived sets as well.

5.2 The SETS Section of a Model

In a set-based LINGO model, the first section in the model is usually the SETS section. A SETS
section begins with the keyword SETS: (including the colon) and ends with the keyword ENDSETS. A
model may have no SETS section, a single SETS section, or multiple SETS sections. A SETS section
may appear almost anywhere in a model. The major restriction is that you must define a set and its
attributes before they are referenced in the model's constraints.

5.2.1 Defining Primitive Sets

To define a primitive set in a SETS section, you specify:

¢ the name of the set, and
¢ any attributes the members of the set may have.

A primitive set definition has the following syntax':
setname:[attribute_list];

The setname is a name you choose. It should be a descriptive name that is easy to remember. The
set name must conform to standard LINGO naming conventions: begin with an alphabetic character,
followed by up to 31 alphanumeric characters or the underscore (). LINGO does not distinguish
between upper and lowercase characters in names.

An example sets declaration is:

SETS:
WAREHOUSE: CAPACITY;
ENDSETS

This means that we will be working with one or more warehouses. Each one of them has an
attribute called CAPACITY. Set members may have zero or more atfributes specified in the
attribute_list of the set definition. An attribute is some property each member of the set possesses.
Attribute names must follow standard naming conventions and be separated by commas.

'The use of Square brackets indicates that a particular item is optional. In this particular case, a
primitive set's member _list and attribute_list are optional.

The Sets View of the World Chapter5 71

For illustration, suppose our warehouses had additional attributes related to their location and the
number of loading docks. These additional attributes could be added to the attribute list of the set
declaration as:

WAREHOUSE: CAPACITY, LOCATION, DOCKS;

5.2.2 Defining Derived Sets

To define a derived set, you specify:

¢ the name of the set,
¢ its parent sets,
¢ optionally, any attributes the set members may have.

A derived set definition has the following syntax:
set_name (parent_set _list) [membership_filter] [: attribute_list];

The set name is a standard LINGO name you choose to name the set. The optional
membership_filter may place a general condition on membership in the set.

The parent set list is a list of previously defined sets, separated by commas. LINGO constructs
all the combinations of members from each of the parent sets to create the members of the derived set.
As an example, consider the following SETS section:

SETS:

PRODUCT ;

MACHINE ;

WEEK;

ALLOWED (PRODUCT, MACHINE, WEEK): VOLUME;
ENDSETS

Sets PRODUCT, MACHINE, and WEEK are primitive sets, while ALLOWED is derived from
parent sets PRODUCT, MACHINE, and WEEK. Unless specified otherwise, the set ALLOWED will
have one member for every combination of PRODUCT, MACHINE, and WEEK. The attribute
VOLUME might be used to specify how much of each product is produced on each machine in each
week. A derived set that contains all possible combinations of members is referred to as being a dense
set. When a set declaration includes a membership_filter or if the members of the derived set are given
explicitly in a DATA section, then we say the set is sparse.

Summarizing, a derived set's members may be constructed by either:

¢ an explicit member list in a DATA section,
¢ amembership filter, or
¢ implicitly dense by saying nothing about the membership of the derived set.

Specification of an explicit membership list for a derived set in a DATA section will be illustrated in
the next section of the text.

If you have a large, sparse set, explicitly listing all members can become cumbersome.
Fortunately, in many sparse sets, the members all satisfy some condition that differentiates them from
the non-members. If you can specify this condition, you can save yourself a lot of typing. This is
exactly how the membership filter method works. Using the membership filter method of defining a
derived set's member_list involves specifying a logical condition that each potential set member must
satisfy for inclusion in the set. You can look at the logical condition as a filter that filters out potential
members who don't measure up to some criteria.

72 Chapter 5 The Sets View of the World

As an example of a membership filter, suppose you have already defined a set called TRUCKS and
each truck has an attribute called CAPACITY. You would like to derive a subset from TRUCKS that
contains only those trucks capable of hauling big loads. You could use an explicit member list and
explicitly enter each of the trucks that can carry heavy loads. However, why do all that work when you
could use a membership filter as follows:

HEAVY DUTY (TRUCKS) | CAPACITY(&1) #GT# 50000;

We have named the set HEAVY DUTY and have derived it from the parent set TRUCKS. The
vertical bar character (|) is used to mark the beginning of a membership filter. The membership filter
allows only those trucks that have a hauling capacity (CAPACITY(&1)) greater than (#GT#) 50,000
into the HEAVY DUTY set. The &1 symbol in the filter is known as a set index placeholder. When
building a derived set that uses a membership filter, LINGO generates all the combinations of parent
set members. Each combination is then "plugged" into the membership condition to see if it passes the
test. The first parent set's value is plugged into &1, the second into &2, and so on. In this example, we
have only one parent set (TRUCKS), so &2 would not have made sense. The symbol #GT# is a logical
operator and means "greater than". Other logical operators recognized by LINGO include:

¢ H#EQ# equal

¢ #NE# not equal

¢ #GE# greater-than-or-equal-to

¢ #LT# less than

¢ #HLE# less-than-or-equal-to
5.2.3 Summary

LINGO recognizes two types of sets - primitive and derived. Primitive sets are the fundamental objects
in a model and can't be broken down into smaller components. Derived sets, on the other hand, are
created from other component sets. These component sets are referred to as the parents of the derived
set and may be either primitive or derived.

A derived set can be either sparse or dense. Dense sets contain all combinations of the parent set
members (sometimes this is also referred to as the Carfesian product or cross of the parent sets).
Sparse sets contain only a subset of the cross of the parent sets. These may be defined by two methods
- explicit listing or membership filter. The explicit listing method involves listing the members of the
sparse set in a DATA section. The membership filter method allows you to specify the sparse set
members compactly using a logical condition, which all members must satisfy. The relationships
amongst the various set types are illustrated in Figure 5.1 below.

The Sets View of the World Chapter5 73

Figure 5.1 Types of Sets

Membership
Filter
5.3 The DATA Section

A SETS section describes the structure of the data for a particular class of problems. A DATA section
provides the data to create a specific instance of this class of problems. The DATA section allows you
to isolate things that are likely to change from week to week. This is a useful practice in that it leads to
easier model maintenance and makes a model easier to scale up or down in dimension.

We find it useful to partition a LINGO model of a large system into three distinct sections: a) the
SETS section, b) the DATA section, and c) the model equations section. The developer of a model has
to understand all three sections. However, if the developer has done a good job of partitioning the
model into the aforementioned sections, the day-to-day user may only need to be familiar with the
DATA section.

Similar to the SETS section, the DATA section begins with the keyword DATA: (including the
colon) and ends with the keyword ENDDATA. In the DATA section, you place statements to initialize
either the attributes of the member of a set you defined in a SETS section or even the set members.
These expressions have the syntax:

attribute_list = value_list;
or

set_name = member_list;

74 Chapter 5 The Sets View of the World

The attribute list contains the names of the attributes you want to initialize, optionally separated
by commas. If there is more than one attribute name on the left-hand side of the statement, then all
attributes must be associated with the same set. The value list contains the values you want to assign
to the attributes in the attribute_list, optionally separated by commas. Consider the following example:

SETS:
SET1: X, Y;
ENDSETS
DATA:
SET1 = M1, M2, M3;
X = 1 2 3;
Y = 4 5 6;
ENDDATA

We have two attributes, X and Y, defined on the set SET'/. The three values of X are set to 1, 2, and
3, while Yis set to 4, 5, and 6. We could have also used the following compound data statement to the
same end:

SETS:

SET1: X, Y;
ENDSETS
DATA:

SET1

M1

M2

M3
ENDDATA

w N X
o U1 W K

Looking at this example, you might imagine X would be assigned the values 1, 4, and 2, since they
are first in the values list, rather than the true values of 1, 2, and 3. When LINGO reads a data
statement's value list, it assigns the first » values to the first position of each of the #» attributes in the
attribute list, the second » values to the second position of each of the # attributes, and so on. In other
words, LINGO is expecting the input data in column form rather than row form.

The DATA section can also be used for specifying members of a derived set. The following
illustrates both how to specify set membership in a DATA section and how to specify a sparse derived
set. This example also specifies values for the VOLUME attribute, although that is not required:

SETS:
PRODUCT ;
MACHINE ;
WEEK ;
ALLOWED (PRODUCT, MACHINE, WEEK): VOLUME;
ENDSETS
DATA:
PRODUCT A B;
MACHINE = M N;
WEEK = 1..2;
ALLOWED, VOLUME =
AMI1 20.5
AN 2 31.3
BN 1 15.8;
ENDDATA

The Sets View of the World Chapter5 75

The ALLOWED set does not have the full complement of eight members. Instead, ALLOWED is just
the three member sparse set:

(A,M,1), (A,N,2), and (B,N,1).

LINGO recognizes a number of standard sets. For example, if you declare in a DATA section:
PRODUCT =1..5;

then the members of the PRODUCT set will in fact be 1, 2, 3, 4, and 5. If you declare:
PERIOD = Feb..May;

then the members of the PERIOD set will in fact be Feb, Mar, Apr, and May. Other examples of
inferred sets include mon..sun and thing1..thing12.

If an attribute is not referenced in a DATA section, then it is by default a decision variable.
LINGO may set such an attribute to whatever value is consistent with the statements in the model
equations section.

This section gave you a brief introduction to the use of the DATA section. Data do not have to
actually reside in the DATA section as shown in these examples. In fact, a DATA section can have
OLE links to Excel, ODBC links to databases, and connections to other spreadsheet and text based
data files. Examples are given later in this chapter.

Note, when LINGO constructs the derived set, it is the right-most parent set that is incremented
the fastest.

5.4 Set Looping Functions
In the model equations section of a model, we state the relationships among various attributes. Any
statements not in a SETS or DATA section are by default in the model equations section. The power of
set based modeling comes from the ability to apply an operation to all members of a set using a single
statement. The functions in LINGO that allow you to do this are called set looping functions. If your
models do not make use of one or more set looping functions, you are missing out on the power of set
based modeling and, even worse, you're probably working too hard!

Set looping functions allow you to iterate through all the members of a set to perform some
operation. There are four set looping functions in LINGO. The names of the functions and their uses
are:

Function Function's Use

@FOR Used to generate constraints over members of a set.

@SUM Computes the sum of an expression over all members
of a set.

@MIN Computes the minimum of an expression over all

members of a set.

MAX Computes the maximum of an expression over all
p p
members of a set.

The syntax for a set looping function is:

@loop_function (setname | (set_index_list)
[| conditional qualifier]] : expression_list),

76 Chapter 5 The Sets View of the World

The @loop_function symbol corresponds to one of the four set looping functions listed in the table
above. The setname is the name of the set over which you want to loop. The set_index_list is optional
and is used to create a list of indices each of which correspond to one of the parent, primitive sets that
form the set specified by setname. As LINGO loops through the members of the set setname, it will set
the values of the indices in the set index list to correspond to the current member of the set setname.
The conditional qualifier is an optional filter and may be used to limit the scope of the set looping
function. When LINGO 1is looping over each member of setname, it evaluates the
conditional_qualifier. 1f the conditional_qualifier evaluates to true, then the expression list of the
@loop_function is performed for the set member. Otherwise, it is skipped. The expression_list is a list
of expressions to be applied to each member of the set setname. When using the @FOR function, the
expression list may contain multiple expressions that are separated by semicolons. These expressions
will be added as constraints to the model. When using the remaining three set looping functions
(@SUM, @MAX, and @MIN), the expression list must contain only one expression. If the
set_index_list is omitted, all attributes referenced in the expression list must be defined on the set
setname.

5.4.1 @SUM Set Looping Function

In this example, we will construct several summation expressions using the @SUM function in order
to illustrate the features of set looping functions in general and the @SUM function in particular.
Consider the model:

SETS:
SET A : X;
ENDSETS
DATA:
SET A = Al A2 A3 A4 A5;

X=5 1 3 4 6;
ENDDATA
X SUM = @SUM(SET A(J): X(J));

LINGO evaluates the @SUM function by first initializing an internal accumulator to zero. LINGO
then begins looping over the members in SET 4. You can think of J as a pronoun. The index variable
J is first set to the first member of SET A (i.e., Al) and X(A1) is then added to the accumulator. Then
J is set to the second element and this process continues until all values of X have been added to the
accumulator. The value of the sum is then stored into the variable X SUM.

Since all the attributes in our expression list (in this case, only X appears in the expression list) are
defined on the index set (SET A), we could have alternatively written our sum as:

X_SUM = @SUM(SET A: X);

In this case, we have dropped the superfluous index set list and the index on X. When an
expression uses this shorthand, we say the index list is implied. Implied index lists are not allowed
when attributes in the expression list have different parent sets.

Next, suppose we want to sum the first three elements of the attribute X. We can use a conditional
qualifier on the set index to accomplish this as follows:

X3 SUM = @SUM(SET A(J) | J #LE# 3: X(J));
The #LE# symbol is called a logical operator. This operator compares the operand on the left (J)

with the one on the right (3) and returns #rue if the left operand is less-than-or-equal-to the one on the
right. Otherwise, it returns false. Therefore, this time, when LINGO computes the sum, it plugs the set

The Sets View of the World Chapter 5 77

index variable J into the conditional qualifier J #LE# 3. If the conditional qualifier evaluates to true,
X(J) will be added to the sum. The end result is that LINGO sums up the first three terms in X,
omitting the fourth and fifth terms, for a total sum of 9.

Before leaving this example, one subtle aspect to note in this last sum expression is the value that
the set index J is returning. Note we are comparing the set index variable to the quantity 3 in the
conditional qualifier J #L.E# 3. In order for this to be meaningful, J must represent a numeric value.
Since a set index is used to loop over set members, one might imagine a set index is merely a
placeholder for the current set member. In a sense, this is true. However, what set indexes really return
is the index of the current set member in its parent primitive set. The index returned is one-based. In
other words, the value 1 is returned when indexing the first set member, 2 when indexing the second,
and so on. Given that set indices return a numeric value, they may be used in arithmetic expressions
along with other variables in your model.

5.4.2 @MIN and @MAX Set Looping Functions

The @MIN and @MAX functions are used to find the minimum and maximum of an expression over
members of a set. Again, consider the model:

SETS:
SET A : X;
ENDSETS
DATA:
SET A Al A2 A3 A4 A5;
X=5 1 3 4 6;
ENDDATA

To find the minimum and maximum values of X, all one need do is add the two expressions:

THE MIN OF X = @MIN(SET A(J): X(J));
THE MAX OF X = @MAX(SET A(J): X(J));

As with the @SUM example above, we can use an implied index list since the attributes are
defined on the index set. Using implied indexing, we can recast our expressions as:

THE MIN OF X = @MIN(SET A: X);
THE MAX OF X = @MAX(SET A: X);

In either case, when we solve this model, LINGO returns the expected minimum and maximum
values of X:

Variable Value
THE MIN OF X 1.000000
THE MAX OF X 6.000000

For illustration purposes, suppose we had just wanted to compute the minimum and maximum
values of the first three elements of X. As with the @SUM example, all we need do is add the
conditional qualifier / #LE# 3. We then have:

THE MIN OF X 3
THE_MAX OF X 3

= @MIN(SET A(J) | J #LE# 3: X(J));
= @VMAX(SET A(J) | J #LE# 3: X(J));

78 Chapter 5 The Sets View of the World

with solution:

Variable Value
THE MIN OF X 3 1.000000
THE MAX OF X 3 5.000000

5.4.3 @FOR Set Looping Function
The @FOR function is used to generate constraints across members of a set. Whereas scalar based
modeling languages require you to explicitly enter each constraint, the @FOR function allows you to
enter a constraint just once and LINGO does the work of generating an occurrence of the constraint for
each of the set members. As such, the @FOR statement provides the set based modeler with a very
powerful tool.

To illustrate the use of @FOR, consider the following:

SETS:
TRUCKS : HAUL;
ENDSETS
DATA:
TRUCKS = MAC, PETERBILT, FORD, DODGE;
ENDDATA

Specifically, we have a primitive set of four trucks with a single attribute titled HAUL. If the
attribute HAUL is used to denote the amount a truck hauls, then we can use the @FOR function to
limit the amount hauled by each truck to 2,500 pounds with the following expression:

@FOR(TRUCKS(T): HAUL(T) <= 2500);

In this case, it might be instructive to view the constraints that LINGO generates from our
expression. You can do this by using the LINGO | Generate command under Windows or by using the
GENERATE command on other platforms. Running this command, we find that LINGO generates the
following four constraints:

HAUL (MAC) <= 2500;

HAUL (PETERBILT) <= 2500;
HAUL (FORD) <= 2500;
HAUL (DODGE) <= 2500;

As we anticipated, LINGO generated one constraint for each truck in the set to limit them to a
load of 2,500 pounds.

Here is a model that uses an @FOR statement (listed in bold) to compute the reciprocal of any
five numbers placed into the GPM attribute:

SETS:
OBJECT: GPM, MPG;
ENDSETS
DATA:
OBJECT = A B C D E;
GPM = .0303 .03571 .04545 .07142 .10;
ENDDATA

@FOR(OBJECT(I):
MPG(I) =1 / GPM(I)
)7

The Sets View of the World Chapter 5 79

Solving this model gives the following values for the reciprocals:

Variable Value
MPG(A) 33.00330
MPG(B) 28.00336
MPG(C) 22.00220
MPG(D) 14.00168
MPG(E) 10.00000

Since the reciprocal of zero is not defined, we could put a conditional qualifier on our @FOR
statement that causes us to skip the reciprocal computation whenever a zero is encountered. The
following @FOR statement accomplishes this:

@QFOR(OBJECT(I) | GPM(I) #NE# O:
MPG(I) =1 / GPM(I)
);

The conditional qualifier (listed in bold) tests to determine if the GPM is not equal (#NE#) to zero.
If so, the computation proceeds.

This was just a brief introduction to the use of the @FOR statement. There will be many
additional examples in the sections to follow.

5.4.4 Nested Set Looping Functions
The simple models shown in the previous section use @FOR to loop over a single set. In larger
models, you may need to loop over a set within another set looping function. When one set looping
function is used within the scope of another, we call it nesting. LINGO allows nesting.

The following is an example of an @SUM loop nested within an @FOR:

! The demand constraints;
@FOR (VENDORS (J) :
@SUM(WAREHOUSES(I): VOLUME(I, J)) = DEMAND(J);
)i
Specifically, for each vendor, we sum up the shipments going from all the warehouses to that
vendor and set the quantity equal to the vendor's demand.

@SUM, @MAX, and @MIN can be nested within any set looping function. @FOR functions, on
the other hand, may only be nested within other @FOR functions.

5.5 Set Based Modeling Examples

Recall, four types of sets can be created in LINGO:

¢ primitive,

¢ dense derived,

¢ sparse derived - explicit list, and

¢ sparse derived - membership filter.

This section will help develop your talents for set based modeling by building and discussing four
models. Each of these four models will introduce one of the set types listed above.

80 Chapter 5 The Sets View of the World

5.5.1 Primitive Set Example
The following staff scheduling model illustrates the use of a primitive set. This model may be found in
the SAMPLES subdirectory off the main LINGO directory under the name STAFFDEM.LNG.

The Problem

Suppose you run the popular Pluto Dog's hot dog stand that is open seven days a week. You hire
employees to work a five-day workweek with two consecutive days off. Each employee receives the
same weekly salary. Some days of the week are busier than others and, based on past experience, you
know how many workers are required on a given day of the week. In particular, your forecast calls for
these staffing requirements:

Day Mon Tue Wed Thu Fri Sat Sun
Staff Req'd 20 16 13 16 19 14 12

You need to determine how many employees to start on each day of the week in order to minimize
the total number of required employees, while still meeting or exceeding staffing requirements each
day of the week.

The Formulation

The first question to consider when building a set based model is, "What are the relevant sets and their
attributes?". In this model, we have a single primitive set, the days of the week. We will be concerned
with two attributes of the DAYS set. The first is the number of staff required on each day. The second
is the decision variable of the number of staff to start on each day. If we call these attributes
REQUIRED and START, then we might write the SETS section and DATA sections as:

SETS:
DAYS : REQUIRED, START;
ENDSETS
DATA:
DAYS = MON TUE WED THU FRI SAT SUN;
REQUIRED = 20 16 13 16 19 14 12;
ENDDATA

We are now at the point where we can begin entering the model's mathematical relations (i.e., the
objective and constraints). Let's begin by writing the objective: minimize the total number of
employees we start during the week. In standard mathematical notation, we might write:

Minimize: 2 START;

The equivalent LINGO statement is very similar. Substitute "MIN=" for "Minimize:" and
"@SUM(DAYS(I):" for 2; and we have:
MIN = @SUM(DAYS(I): START(I));

Now, all that's left is to deduce the constraints. There is only one set of constraints in this model.
Namely, we must have enough staff on duty each day to meet or exceed staffing requirements. In
words, what we want is:

for each day: Staff on duty today > Staff required today,

The Sets View of the World Chapter 5 81

The right-hand side of this expression, Staff required today, is given. It is simply the quantity
REQUIRED(I).The left-hand side, Staff on duty today takes a little thought. Given that all employees
are on a five-day on/two day off schedule, the number of employees working today is:

Number working today = Number starting today +
Number starting 1 day ago + Number starting 2 days ago +
Number starting 3 days ago + Number starting 4 days ago.

In other words, to compute the number of employees working today, we sum up the number of
people starting today plus those starting over the previous four days. The employees starting five and
six days back don't count because they are on their days off. Therefore, using mathematical notation,
what one might consider doing is adding the constraint:

2. START, > REQUIRED), forj eDAYS

i=j-4.j
Translating into LINGO notation, we can write this as:

@FOR(DAYS(J):
@SUM(DAYS(I) | I #LE# 5: START(J - I + 1))
>= REQUIRED(J)

)

In words, the LINGO statement says, for each day of the week, the sum of the employees starting
over the five-day period beginning four days ago and ending today must be greater-than-or-equal-to
the required number of staff for the day. This sounds correct, but there is a slight problem. If we try to
solve our model with this constraint, we get the error message:

LINGO Error Message E3

|'Enor Code?n—‘ Help | K |

Emar Text

Subscript out of range on attribute:
START

To see why we get this error message, consider what happens on Thursday. Thursday has an index
of 4 in our set DAYS. As written, the staffing constraint for Thursday will be:

START(4 - 1 + 1) + START(4 - 2 + 1) +
START(4 - 3 + 1) + START(4 - 4 + 1) +
START(4 - 5 + 1) >= REQUIRED(4);

Simplifying, we get:

START (4) + START(3) +
START (2) + START(1) +
START (0) >= REQUIRED(4);

82 Chapter 5 The Sets View of the World

It is the START(0) term that is at the root of our problem. START is defined for days 1 through 7.
START(0) does not exist. An index of 0 on START is considered "out of range".

What we would like to do is to have any indices less-than-or-equal-to 0, wrap around to the end of
the week. Specifically, 0 would correspond to Sunday (7), -1 to Saturday (6), and so on. LINGO has a
function that does just this, and it is called @WRAP.

The @WRAP function takes two arguments - call them /NDEX and LIMIT. Formally speaking,
@WRAP returns J such that J = INDEX - K x LIMIT, where K is an integer such that J is in the interval
[1,LIMIT). Informally speaking, @WRAP will subtract or add LIMIT to INDEX until it falls in the
range | to LIMIT, and, therefore, is just what we need to "wrap around" an index in multi-period
planning models.

Incorporating the @WRAP function, we get the corrected, final version of our staffing constraint:

@FOR(DAYS(J):

@SUM(DAYS(I) | I #LE# 5:
START(@WRAP(J - I + 1, 7))) >= REQUIRED(J)
)
The Solution
Below is our staffing model in its entirety:
SETS:
DAYS : REQUIRED, START;
ENDSETS
DATA:

DAYS = MON TUE WED THU FRI SAT SUN;
REQUIRED = 20 16 13 16 19 14 12;
ENDDATA
MIN = @QSUM(DAYS(I): START(I));
@FOR(DAYS(J):
@SUM(DAYS(I) | I #LE# 5:
START (@WRAP(J - I + 1, 7))) >= REQUIRED(J)
);

Solving this model, we get the solution report:

Optimal solution found at step: 8

Objective value: 22.00000
Variable Value Reduced Cost
REQUIRED (MON) 20.00000 0.0000000
REQUIRED (TUE) 16.00000 0.0000000
REQUIRED (WED) 13.00000 0.0000000
REQUIRED (THU) 16.00000 0.0000000
REQUIRED (FRI) 19.00000 0.0000000
REQUIRED (SAT) 14.00000 0.0000000
REQUIRED (SUN) 12.00000 0.0000000
START (MON) 8.00000 0.0000000
START (TUE) 2.00000 0.0000000
START (WED) 0.00000 0.0000000
START (THU) 6.00000 0.0000000
START (FRI) 3.00000 0.0000000
START (SAT) 3.00000 0.0000000
START (SUN) 0.00000 0.0000000

The Sets View of the World Chapter 5 83

Row Slack or Surplus Dual Price
1 22.00000 1.000000
2 0.0000000 -0.2000000
3 0.0000000 -0.2000000
4 0.0000000 -0.2000000
5 0.0000000 -0.2000000
6 0.0000000 -0.2000000
7 0.0000000 -0.2000000
8 0.0000000 -0.2000000

The objective value of 22 means we need to hire 22 workers.
We start our workers according to the schedule:

Mon Tue Wed Thu Fri Sat Sun
Start 8 2 0 6 3 3 0

If we look at the surpluses on our staffing requirement rows (rows 2 - 7), we see the slack values
are 0 on all of the days. This means there are no extra workers on any day.

5.5.2 Dense Derived Set Example
The following model illustrates the use of a dense derived set in a blending model. This model may be
found in the SAMPLES subdirectory off the main LINGO directory under the name CHESS.LNG.

The Problem

The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called the
Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews. The
table below lists the number of ounces of the two nuts contained in each pound of each brand and the
price at which the company can sell a pound of each brand:

Pawn Knight Bishop King

Peanuts (0z.) 15 10 6 2
Cashews (0z.) 1 6 10 14
Selling Price ($/Ib.) 2 3 4 5

Chess has contracts with suppliers to receive per day: 750 pounds of peanuts and 250 pounds of
cashews. Our problem is to determine the number of pounds of each brand to produce each day to
maximize total revenue without exceeding the available supply of nuts.

The Formulation

The primitive sets in this model are the nut types and the brands of mixed nuts. The NUTS set has
the single attribute SUPPLY that is the daily supply of nuts in pounds. The BRANDS set has PRICE
and PRODUCE attributes, where PRICE stores the selling price of the brands and PRODUCE
represents the decision variables of how many pounds of each brand to produce each day.

84 Chapter 5 The Sets View of the World

We need one more set, however, in order to input the brand formulas. We need a two dimensional
table defined on the nut types and the brands. To do this, we will generate a derived set from the cross
of the NUTS and BRANDS sets. Adding this derived set, we get the complete SETS section:

SETS:
NUTS : SUPPLY;
BRANDS : PRICE, PRODUCE;
FORMULA (NUTS, BRANDS): OUNCES;
ENDSETS

We have titled the derived set FORMULA, and it has the single attribute OUNCES, which will be
used to store the ounces of nuts used per pound of each brand. Since we have not specified the
members of this derived set, LINGO assumes we want the complete, dense set that includes all pairs of
nuts and brands.

Now that our sets are defined, we can move on to building the DATA section. We initialize the
three attributes SUPPLY, PRICE, and OUNCES in the DATA section as follows:

DATA:
NUTS = PEANUTS, CASHEWS;
SUPPLY = 750 250;
BRANDS = PAWN, KNIGHT, BISHOP, KING;
PRICE = 2 3 4 5;
OUNCES = 15 10 6 2 ! (Peanuts);
1 [10 14; ! (Cashews);
ENDDATA

With the sets and data specified, we can enter our objective function and constraints. The
objective function of maximizing total revenue is straightforward:

MAX = @SUM(BRANDS(I): PRICE(I) * PRODUCE(I));

Our model has only one class of constraints. Namely, we can't use more nuts than we are supplied
with on a daily basis. In words, we would like to ensure that:

For each nut type i, the number of pounds of nut i used must be less-than-or-equal-to the
supply of nut i.
We can express this in LINGO as:

@FOR(NUTS(I):

@SUM (BRANDS (J):

OUNCES(I, J) * PRODUCE(J) / 16) <= SUPPLY(I)
);

We divide the sum on the left-hand side by 16 to convert from ounces to pounds.

The Sets View of the World Chapter5 85

The Solution
Our completed nut-blending model is:

SETS:
NUTS : SUPPLY;
BRANDS : PRICE, PRODUCE;
FORMULA (NUTS, BRANDS): OUNCES;

ENDSETS
DATA:
NUTS = PEANUTS, CASHEWS;
SUPPLY = 750 250;
BRANDS = PAWN, KNIGHT, BISHOP, KING;
PRICE = 2 3 4 5;
OUNCES = 15 10 6 2 ! (Peanuts) ;
1 [10 14; ! (Cashews);
ENDDATA

MAX = QSUM(BRANDS(I):
PRICE(I) * PRODUCE(I));
@FOR(NUTS(I):
@SUM (BRANDS (J) :
OUNCES(I, J) * PRODUCE (J)/16) <= SUPPLY (I)
);

An abbreviated solution report to the model follows:

Optimal solution found at step: 0
Objective value: 2692.308
Variable Value Reduced Cost
PRODUCE (PAWN) 769.2308 0.0000000
PRODUCE (KNIGHT) 0.0000000 0.1538461
PRODUCE (BISHOP) 0.0000000 0.7692297E-01
PRODUCE (KING) 230.7692 0.0000000
Row Slack or Surplus Dual Price
1 2692.308 1.000000
2 0.0000000 1.769231
3 0.0000000 5.461538

This solution tells us Chess should produce 769.2 pounds of the Pawn mix and 230.8 of the King
for total revenue of $2692.30. The dual prices on the rows indicate Chess should be willing to pay up
to $1.77 for an extra pound of peanuts and $5.46 for an extra pound of cashews. If, for marketing
reasons, Chess decides it must produce at least some of the Knight and Bishop mixes, then the reduced
cost figures tell us revenue will decrease by 15.4 cents with the first pound of Knight produced and
revenue will decline by 76.9 cents with the first pound of Bishop produced.

5.5.3 Sparse Derived Set Example - Explicit List

In this example, we will introduce the use of a sparse derived set with an explicit listing. When using
this method to define a sparse set, we must explicitly list all members of the set. This will usually be
some small subset of the dense set resulting from the full Cartesian product of the parent sets.

For our example, we will set up a PERT (Program Evaluation and Review Technique) model to
determine the critical path of tasks in a project involving the roll out of a new product. PERT is a
simple, but powerful, technique developed in the 1950s to assist managers in tracking the progress of
large projects. Its first official application was to the fleet submarine ballistic missile project, the

86 Chapter 5 The Sets View of the World

so-called Polaris project. According to Craven(2001), PERT was given its name by Admiral William
F. Raborn, who played a key role in starting the Polaris project. Raborn had a new bride whose
nickname was Pert. In her honor, Raborn directed that the management system that was to monitor the
Polaris project be called Pert. In fact, the PERT system proved so successful the Polaris project was
completed eighteen months ahead of schedule! PERT is particularly useful at identifying the critical
activities within a project, which, if delayed, will delay the project as a whole. These time critical
activities are referred to as the critical path of a project. Having such insight into the dynamics of a
project goes a long way in guaranteeing it won't get sidetracked and become delayed. PERT, and a
closely related technique called CPM (Critical Path Method), continues to be used successfully on a
wide range of projects. The formulation for this model is included in the SAMPLES subdirectory off
the main LINGO directory under the name PERTD.LNG.

The Problem

Wireless Widgets is about to launch a new product — the Solar Widget. In order to guarantee the
launch will occur on time, WW wants to perform a PERT analysis of the tasks leading up to the
launch. Doing so will allow them to identify the critical path of tasks that must be completed on time
in order to guarantee the Solar Widget's timely introduction. The tasks that must be accomplished
before introduction and their anticipated times for completion are listed in the table below:

Task Weeks
Finalize Design 10
Forecast Demand 14
Survey Competition 3
Set Prices 3
Schedule Production Run 7
Cost Out 4
Train Salesmen 10

Certain tasks must be completed before others can commence. These precedence relations are
shown in Figure 5.2:

Figure 5.2 Product Launch Precedence Relations

Forecast Schedule

Demand Production Run
Finalize Train
Design Salesmen

Survey
Competition

For instance, the two arrows originating from the Forecast Demand node indicate the task must be
completed before the Schedule Production Run and the Set Prices tasks may be started.

Our goal is to construct a PERT model for the Solar Widget's introduction in order to identify the
tasks on the critical path.

The Formulation
We will need a primitive set to represent the tasks of the project.

The Sets View of the World Chapter 5 87

We have associated four attributes with the TASKS set. The definitions of the attributes are:

TIME Time duration to complete the task, given

ES Earliest possible start time for the task, to be computed,

LS Latest possible start time for the task, to be computed
SLACK Difference between LS and ES for the task, to be computed.

If a task has a 0 slack, it means the task must start on time or the whole project will be delayed.
The collection of tasks with 0 slack time constitutes the critical path for the project.

In order to compute the start times for the tasks, we will need to examine the precedence relations.
Thus, we will need to input the precedence relations into the model. The precedence relations can be
viewed as a list of ordered pairs of tasks. For instance, the fact the DESIGN task must be completed
before the FORECAST task could be represented as the ordered pair (DESIGN, FORECAST). Creating
a two-dimensional derived set on the 74SKS set will allow us to input the list of precedence relations.
Therefore, our DATA section will look as follows:

DATA:
TASKS : TIME, ES, LS, SLACK;
PRED (TASKS, TASKS);

Notice that the PRED set has no attributes. Its purpose is only to provide the information about the
precedence relationships between tasks.
Next, we can input the task times and precedence pairs in the DATA section thus:

DATA:

TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN;
TIME = 10, 14, 3, 3, 7, 4, 10;
PRED =

DESIGN, FORECAST,
DESIGN, SURVEY,
FORECAST, PRICE,
FORECAST, SCHEDULE,
SURVEY, PRICE,
SCHEDULE, COSTOUT,
PRICE, TRAIN,
COSTOUT, TRAIN;

ENDDATA

Keep in mind that the first member of the PRED set is the ordered pair (DESIGN, FORECAST)
and not just the single task DESIGN. Therefore, this set has a total of 8 members. Each of which
corresponds to an arc in the precedence relations diagram.

The feature to note from this example is that the set PRED is a sparse derived set with an explicit
listing of members. The set is a subset derived from the cross of the TASKS set upon itself. The set is
sparse because it contains only 8 out of a possible 49 members found in the complete cross of TASKS
on TASKS. The set has an explicit listing because we have included a listing of the members we want
included in the set. Explicitly listing the members of a sparse set may not be convenient in cases where
there are thousands of members to select from, but it does make sense whenever set membership
conditions are not well-defined and the sparse set size is small relative to the dense alternative.

88 Chapter 5 The Sets View of the World

Now, with our sets and data established, we can turn our attention to building the formulas of the
model. We have three attributes to compute: earliest start (ES), latest start (LS), and slack time
(SLACK). The trick is computing ES and LS. Once we have these times, SLACK is merely the
difference of the two. Let's start by deriving a formula to compute ES. A task cannot begin until all its
predecessor tasks are completed. Thus, if we find the latest finishing time of all predecessors to a task,
then we have also found its earliest start time. Therefore, in words, the earliest start time for task 7 is
equal to the maximum of the sum of the earliest start time of the predecessor plus its completion time
over all predecessors of task ¢. The corresponding LINGO notation is:

@FOR(TASKS(J)| J #GT# 1:
ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I)));

Note, we skip the computation for task 1 by adding the conditional qualifier J #GT# 1. We do this
because task 1 has no predecessors. We will give the first task an arbitrary start time of 0 below.

Computing LS is similar to £S, except we must think backwards. In words, the latest time for task
t to start is the minimum, over all successor tasks j, of j's latest start minus the time to perform task z. If
task ¢ starts any later than this, it will force at least one successor to start later than its latest start time.
Converting into LINGO syntax gives:

@FOR(TASKS(I)| I #LT# LTASK:
LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I)));

Here, we omit the computation for the last task, since it has no successor tasks.
Computing slack time is just the difference between LS and ES and may be written as:

@FOR(TASKS(I): SLACK(I) = Ls(I) - ES(I));

We can set the start time of task 1 to some arbitrary value. For our purposes, we will set it to 0
with the statement:

ES(1) = 0;

We have now input formulas for computing the values of all the variables with the exception of
the latest start time for the last task. It turns out, if the last project were started any later than its earliest
start time, the entire project would be delayed. So, by definition, the latest start time for the last project
is equal to its earliest start time. We can express this in LINGO using the equation:

LsS(7) = ES(7);

This would work, but it is not a very general way to express the relation. Suppose you were to add
some tasks to your model. You'd have to change the 7 in this equation to whatever the new number of
tasks was. The whole idea behind LINGO's set based modeling language is the equations in the model
should not need changing each time the data change. Expressing the equation in this form violates data
independence. Here's a better way to do it:

LTASK = @SIZE(TASKS);
LS(LTASK) = ES(LTASK);

The @SIZE function returns the size of a set. In this case, it will return the value 7, as desired.
However, if we changed the number of tasks, @SIZE would also return the new, correct value. Thus,
we preserve the data independence of our model's structure.

The Sets View of the World Chapter 5 89

The Solution
The entire PERT formulation and portions of its solution appear below:
SETS:
TASKS : TIME, ES, LS, SLACK;
PRED (TASKS, TASKS);
ENDSETS
DATA:
TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN;
TIME = 10, 14, 3, 3, 7, 4, 10;
PRED =
DESIGN, FORECAST,
DESIGN, SURVEY,
FORECAST, PRICE,
FORECAST, SCHEDULE,
SURVEY, PRICE,
SCHEDULE, COSTOUT,
PRICE, TRAIN,
COSTOUT, TRAIN;
ENDDATA
@FOR(TASKS(J)| J #GT# 1:
ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))
)
@FOR(TASKS(I)| I #LT# LTASK:
LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I));
)
@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));
ES(1) = 0;
LTASK = @SIZE(TASKS);
LS(LTASK) = ES(LTASK);
The interesting part of the solution is:
Variable Value
LTASK 7.000000
ES(DESIGN) 0.000000
ES(FORECAST) 10.000000
ES (SURVEY) 10.000000
ES(PRICE) 24.000000
ES(SCHEDULE) 24.000000
ES(COSTOUT) 31.000000
ES(TRAIN) 35.000000
LS (DESIGN) 0.000000
LS (FORECAST) 10.000000
LS (SURVEY) 29.000000
LS (PRICE) 32.000000
LS (SCHEDULE) 24.000000
LS (COSTOUT) 31.000000
LS (TRAIN) 35.000000
SLACK (DESIGN) 0.000000
SLACK (FORECAST) 0.000000
SLACK (SURVEY) 19.000000
SLACK (PRICE) 8.000000
SLACK (SCHEDULE) 0.000000

90 Chapter 5 The Sets View of the World

SLACK (COSTOUT) 0.000000
SLACK(TRAIN) 0.000000

The interesting values are the slacks for the tasks. SURVEY and PRICE have respective slacks of
19 and 8. The start time of either SURVEY or PRICE (but not both) may be delayed by as much as
these slack values without delaying the completion time of the entire project. The tasks DESIGN,
FORECAST, SCHEDULE, COSTOUT, and TRAIN, on the other hand, have 0 slack. These tasks
constitute the critical path. If any of their start times are delayed, the entire project will be delayed.
Management will want to pay close attention to these critical path activities to be sure they start on
time and complete within the allotted time. Finally, the ES(TRAIN) value of 35 tells us the estimated
time to the start of the roll out of the new Solar Widget will be 45 weeks: 35 weeks to get to the start of
training, plus 10 weeks to complete training.

5.5.4 A Sparse Derived Set Using a Membership Filter

In this example, we introduce the use of a sparse derived set with a membership filter. Using a
membership filter is the third method for defining a derived set. When you define a set using this
method, you specify a logical condition each member of the set must satisfy. This condition is used to
filter out members that don't satisfy the membership condition.

For our example, we will formulate a matching problem. In a matching problem, there are N
objects we want to match into pairs at minimum cost. Sometimes this is known as the roommate
selection problem. It is a problem faced by a university at the beginning of each school year as
incoming first year students are assigned to rooms in dormitories. The pair (7,J) is indistinguishable
from the pair (J,1). Therefore, we arbitrarily require / be less than J in the pair. Formally, we require /
and J make a set of ordered pairs. In other words, we do not wish to generate redundant ordered pairs
of I and J, but only those with / less than J. This requirement that / be less than J will form our
membership filter.

The file containing this model may be found in the SAMPLES subdirectory off the main LINGO
directory under the name MATCHD.LNG.

The Sets View of the World Chapter 5 91

The Problem

Suppose you manage your company's strategic planning department. There are eight analysts in the
department. Your department is about to move into a new suite of offices. There are four offices in the
new suite and you need to match up your analysts into 4 pairs, so each pair can be assigned to one of
the new offices. Based on past observations you know some of the analysts work better together than
they do with others. In the interest of departmental peace, you would like to come up with a pairing of
analysts that results in minimal potential conflicts. To this goal, you have come up with a rating system
for pairing your analysts. The scale runs from 1 to 10, with a 1 rating for a pair meaning the two get
along fantastically, whereas all sharp objects should be removed from the pair's office in anticipation
of mayhem for a rating of 10. The ratings appear in the following table:

Analysts 1 2 3 4 5 6 7 8
1 - 9 3 4 2 1 5 &6
2 - - 1 7 3 5 2 1
3 - - - 4 4 2 9 2
4 - - - - 1 5 5 2
5 - - - - - 8 7 6
6 - - - - - - 2 3
7 - - - - - - - 4

Analysts' Incompatibility Ratings

Since the pairing of analyst / with analyst J is indistinguishable from the pairing of J with 7, we
have only included the above diagonal elements in the table. Our problem is to find the pairings of
analysts that minimizes the sum of the incompatibility ratings of the paired analysts.

The Formulation
The first set of interest in this problem is the set of eight analysts. This primitive set can be written
simply as:

ANALYSTS;

The final set we want to construct is a set consisting of all the potential pairings. This will be a
derived set we will build by taking the cross of the ANALYST set. As a first pass, we could build the
dense derived set:

PAIRS (ANALYSTS, ANALYSTS);

This set, however, would include both PAIRS(I, J) and PAIRS(J, I). Since only one of these pairs
is required, the second is wasteful. Furthermore, this set will include "pairs" of the same analyst of the
form PAIRS(I, I). As much as each of the analysts might like an office of their own, such a solution is
not feasible. The solution is to put a membership filter on our derived set requiring each pair (7J) in
the final set to obey the condition J be greater than /. We do this with the set definition:

PAIRS (ANALYSTS, ANALYSTS) | &2 #GT# &1;

The start of the membership filter is denoted with the vertical bar character (|). The &/ and &2
symbols in the filter are known as set index placeholders. Set index placeholders are valid only in
membership filters. When LINGO constructs the PAIRS set, it generates all combinations in the cross
of the ANALYSTS set on itself. Each combination is then "plugged" into the membership filter to see if
it passes the test. Specifically, for each pair (7,J) in the cross of set ANALYSTS on itself, / is substituted

92 Chapter 5 The Sets View of the World

into the placeholder &/ and J into &2 and the filter is evaluated. If the filter evaluates to true, (7,J) is
added to the pairs set. Viewed in tabular form, this leaves us with just the above diagonal elements of
the (1,J) pairing table.

We will also be concerned with two attributes of the PAIRS set. First, we will need an attribute
that corresponds to the incompatibility rating of the pairings. Second, we will need an attribute to
indicate if analyst / is paired with analyst J. We will call these attributes RATING and MATCH. We
append them to the PAIRS set definition as follows:

PAIRS (ANALYSTS, ANALYSTS) | &2 #GT# &l: RATING, MATCH;

We will simply initialize the RATING attribute to the incompatibility ratings listed in the table
above using the DATA section:

DATA:
ANALYSTS = 1..8;
RATING =
9 3 4 2 1 5 6
1 7 3 5 2 1
4 4 2 9 2
1 5 5 2
8 7 6
2 3
4;
ENDDATA

We will use the convention of letting MATCH(1, J) be 1 if we pair analyst / with analyst J,
otherwise 0. As such, the MATCH attribute contains the decision variables for the model.

Our objective is to minimize the sum of the incompatibility ratings of all the final pairings. This is
just the inner product on the RATING and MATCH attributes and is written as:

MIN = @QSUM(PAIRS(I, J):
RATING(I, J) * MATCH(I, J));

There is just one class of constraints in the model. In words, what we want to do is:
For each analyst, ensure the analyst is paired with exactly one other analyst.

Putting the constraint into LINGO syntax, we get:

@FOR (ANALYSTS(I):
@SUM(PAIRS(J, K) |
MATCH(J, K)) =1
)

The feature of interest in this constraint is the conditional qualifier J #EQ# I #OR# K #EQ# I on
the @SUM function. For each analyst /, we sum up all the MATCH variables that contain / and set
them equal to 1. In so doing, we guarantee analyst / will be paired up with exactly one other analyst.
The conditional qualifier guarantees we only sum up the MATCH variables that include / in its pairing.

One other feature is required in this model. We are letting MATCH(1, J) be 1 if we are pairing /
with J. Otherwise, it will be 0. Unless specified otherwise, LINGO variables can assume any value
from O to infinity. Since we want MATCH to be restricted to being only 0 or 1, we need to add one
other feature to our model. What we need is to apply the @BIN variable domain function to the
MATCH attribute. Variable domain functions are used to restrict the values a variable can assume.
Unlike constraints, variable domain functions do not add equations to a model. The @BIN function

J #EQ# I #OR# K #EQ# I:

The Sets View of the World Chapter 5 93

restricts a variable to being binary (i.e., 0 or 1). When you have a model that contains binary variables,
it is said to be an integer programming (IP) model. IP models are much more difficult to solve than
models that contain only continuous variables. Carelessly formulated IPs (with several hundred integer
variables or more) can literally take forever to solve! Thus, you should limit the use of binary variables
whenever possible. To apply @BIN to all the variables in the MATCH attribute, add the @FOR
expression:

@FOR(PAIRS(I, J): @BIN(MATCH(I, J))):;

The Solution
The entire formulation for our matching example and parts of its solution appears below:
SETS:
ANALYSTS;
PATIRS (ANALYSTS, ANALYSTS) | &2 #GT# &l:
RATING, MATCH;
ENDSETS
DATA:
ANALYSTS = 1..8;
RATING =
9 3 4 2 1 5 6
T 7 3 5 2 1
4 4 2 9 2
1 5 5 2
8 7 6
2 3
4;
ENDDATA

MIN = QSUM(PAIRS(I, J):
RATING(I, J) * MATCH(I, J));
@FOR(ANALYSTS(I):
@SUM(PAIRS(J, K) | J #EQ# I #OR# K #EQ# I:
MATCH(J, K)) =1
)
@FOR(PAIRS(I, J): @BIN(MATCH(I, J)));

A solution is:

Variable Value
MATCH(1, 2) 0.0000000
MATCH(1, 3) 0.0000000
MATCH(1, 4) 0.0000000
MATCH(1, 5) 0.0000000
MATCH(1, 6) 1.000000
MATCH(1, 7) 0.0000000
MATCH(1, 8) 0.0000000
MATCH(2, 3) 0.0000000
MATCH(2, 4) 0.0000000
MATCH(2, 5) 0.0000000
MATCH(2, 6) 0.0000000
MATCH(2, 7) 1.000000
MATCH(2, 8) 0.0000000
MATCH(3, 4) 0.0000000
MATCH(3, 5) 0.0000000
MATCH(3, 6) 0.0000000

94 Chapter 5 The Sets View of the World

MATCH(3, 7) 0.0000000
MATCH(3, 8) 1.000000
MATCH(4, 5) 1.000000
MATCH(4, 6) 0.0000000
MATCH(4, 7) 0.0000000
MATCH(4, 8) 0.0000000
MATCH(5, 6) 0.0000000
MATCH(5, 7) 0.0000000
MATCH(5, 8) 0.0000000
MATCH(6, 7) 0.0000000
MATCH(6, 8) 0.0000000
MATCH(7, 8) 0.0000000

Notice from the objective value, the total sum of incompatibility ratings for the optimal pairings is
6. Scanning the Value column for 1’s, we find the optimal pairings: (1,6), (2,7), (3,8), and (4,5).

5.6 Domain Functions for Variables

Variable domain functions were briefly introduced in this chapter when we used @BIN in the previous
matching model. Variable domain functions allow one to put restrictions on the values allowed for
decision variables. Examples of the four domain functions available are:

@BIN (Y);

@GIN (X);

@BND (100, DELIVER, 250);
@FREE (PROFIT);.

The statement @BIN (Y) restricts the variable Y to be a binary variable. That is, it can take on
only the values 0 and 1.

The statement @GIN (X) restricts the variable X to be a general integer variable. That is, it can
take on only the values 0, 1, 2, ...

The @BND () specification allows one to specify simple upper and lower bounds. The statement
@BND (100, DELIVER, 250) restricts the variable DELIVER to be in the interval [100, 250]. The
same effect could be achieved by the slightly more verbose:

DELIVER >=100;
DELIVER <=250;

LINGO, by default, gives a lower bound of zero to every decision variable. The statement
@FREE (PROFIT) overrides this default lower bound for the variable PROFIT and says that
(unfortunately) PROFIT can take on any value between minus infinity and plus infinity. Each of the
domain functions can appear inside @FOR loops, just like any other constraint.

5.7 Spreadsheets and LINGO

In this chapter, we have seen how LINGO can be useful for modeling very large problems. The most
widely used method for modeling of any sort is undoubtedly spreadsheet models. When is which
approach more appropriate?

The major advantages of doing a model in a spreadsheet are:

- Excellent report formatting features available,
- Large audience of people who understand spreadsheets, and
- Good interface capability with other systems such as word processors.

The Sets View of the World Chapter5 95

The major advantages of doing a model in LINGO are:

- Flexibility of various kinds.

- Scalability--It is easy to change the size of any set (e.g., add time periods, products,
customers, suppliers, transportation modes, etc.) without having to worry about copying or
editing formulae. There is no upper limit of 255(as in a spreadsheet) on the number of
columns, or 65536 on the number of rows. There is no limit of about 900(as in a
spreadsheet) characters in a formula.

- Sparse sets are easily represented.

- Auditability and visibility--It is easy to see the formulae of a LINGO model in complete,
comprehensive form. Truly understanding the model formulae underlying a complex
spreadsheet is an exercise in detective work.

- Multiple dimensions are easily represented. A spreadsheet handles two dimensions very
well, three dimensions somewhat well, and four or more dimensions not very well.

One can get most of the benefits of both by using LINGO in conjunction with spreadsheets. One
can place "hooks" in a LINGO model, so it automatically retrieves and inserts data from/to
spreadsheets, databases, and ordinary files. Under Microsoft Windows, the hooks used are the OLE
(Object Linking and Embedding) and ODBC (Open Database Connectivity) interfaces provided as part
of Windows. Using the OLE capability to connect an Excel spreadsheet to a LINGO model requires
two steps:

a) In the spreadsheet, each data area that is to be either a supplier to or a receiver of data
from the LINGO model must be given an appropriate range name. This is done in the
spreadsheet by highlighting the area of interest with the mouse, and then using the Insert |
Name | Define command. The most convenient name to give to a range is the same name
by which the data are referenced in the LINGO model.

b) In the LINGO model, each attribute (vector) (e.g., plant capacities) that is to be retrieved
from a spreadsheet, must appear in a LINGO DATA section in a statement of the form:

CAPACITY = @OLE("C:\MYDATA.XLS");

Each attribute (e.g., amount to ship) to be sent to a spreadsheet must appear in a LINGO DATA
section in a statement of the form:

@OLE('C:\MYDATA.XLS") = AMT SHIPPED,;
If only one spreadsheet is open in Excel, this connection can be simplified. You need only write:
CAPACITY = @OLE();

LINGO will look in the only open spreadsheet for the range called CAPACITY. This “unspecified
spreadsheet” feature is very handy if you want to apply the same LINGO model to several different
spreadsheet data sets.

96 Chapter 5 The Sets View of the World

This spreadsheet connection can be pushed even further by embedding the LINGO model in the
spreadsheet for which it has a data connection. This is handy because the associated LINGO model
will always be obviously and immediately available when the spreadsheet is opened. The screen shot
below shows a transportation model embedded in a spreadsheet. To the casual user, it looks like a

standard spreadsheet with a special solve button.

E3 Microseft Excel - xlingtran
File Edit View Insert Format: Tools Data Window WB! Help Acobat Type @ ques SO, e

i
il
i
@
¥
L]
.
&
1
>

DEEd® &% B v - @ -4 g 0% -3 2 a ~10 - B S U = =] a2 A 2
Ry Rz I |2 <eive = |90 RO
A1 - F
| A B [Twr T s T s | H J K I 1 N ¢] 57|

1 Trnasportation LP Using Excel and LINGO [
2 The cost matrix
:3: E Cagacl_ty. Cust CustB| CustC CustD |
4 | Demand:| | 4 | 5 3
] Wh1 10 2 6 4 3 Salve |

6. Wh21 15) 6 6 3 6

7 Wh3| 1 5 3 4 5

E - o 0

& | | o) 0is OK, else see lingo log

|10 |TotCost= 53 Recommended Shipments

1 Wh1 | 4 0 0 g

-4 Wh2 0 0 5 0

=l Wh3 | 0 7| 0 0

1

i

Ready

£} dingotp3

The Sets View of the World Chapter 5 97

The data and results are stored on the first tab/sheet of the spreadsheet file. Not so obvious is the
LINGO model that is stored on another tab in the same spreadsheet (see below). Completely hidden is
a small VBA program in the spreadsheet that causes the LINGO model on the second tab to be solved
whenever the Solve button is clicked on the first tab. The complete example can be found in the file
xlingtran.xls.

E3 Microseft Excel - xlingtran E”'EHEJ
@ File Edit View Insert Format: Tools Data Window WB! Help Acobat Typea 5 fi SO, e
DEeEdsy &% B @ = -4 [ilf W% ~ [3) ¥ Couriertew v r B I U SE=EE $% EFE DA ?
Y KIZe=== 9. 08,
Al hd S MIN =TOTCOST

o | B S D = F G H =
gl [t
2l

3
4

| x;

Ll
7@ v open spreadsheet;

9
0]

11

i

13

14| ENDDRTA

|

6 COST (I, T) *X (I,J));

17| @FOR(SOURCE (Ij:
18 @5UM(SXD(I,J): X(I,J)) <= CRPRCITY(I};

19 b

20| @FOR(DEST(J):
21 | @SUM(SXDI(T,J): X(T,J)) = DEMAND(J):
M 4 » W]\ Data and Resufts) LINGO Script { Instructions /- - i I B2 | Al
Ready

—

‘4 start o @ E 7| ZUNeO-UNGOM... &) wingtran 3] ingotp3 | ol ingtet -Microsa... S OED 4 4

Just as @OLE() is used to connect a LINGO model to a spreadsheet and @ODBC() is used to connect
a LINGO model to most databases that support the SQL interface, the @TEXT() statement is available
to connect a LINGO model to a simple text file. You can send the value(s) of attribute X to a file called
"myfile.out" with:

DATA:
@TEXT('"MYFILE.OUT') = X;
ENDDATA

The following will send the value of X to the screen, along with an explanatory message:

@QTEXT () = 'The value of X=', X;

Still one more way that LINGO can be incorporated into an application is by way of a subroutine call.
A regular computer program, say in C/C++ or Visual Basic, can make a regular call to the LINGO
DLL(Dynamic Link Library). The model is passed as a string variable to the LINGO DLL. See the
LINGO manual for more details.

98 Chapter 5 The Sets View of the World

5.8 Summary

In this chapter, we’ve discussed the concept of sets, defined sets, and demonstrated the power and
flexibility of set-based modeling. You should now have a foundation of knowledge in the definition
and use of both primitive and derived sets.

5.9 Problems

1. You wish to represent the status of an academic institution during a specific teaching term. The
major features to be represented are that instructors teach courses and students are registered for
courses. You want to keep track of who is teaching which course, who is registered for each
course, and which courses a given student is taking. What sets would you recommend if each
course is taught by exactly one instructor?

2. Suppose we take into account the additional complication of team teaching. That is, two or more
instructors teach some courses. How would you modify your answer to the previous question?

6

Product Mix Problems

6.1 Introduction

Product mix problems are conceptually the easiest constrained optimization problems to comprehend.
The Astro/Cosmo problem considered earlier is an example. Although product mix problems are
seldom encountered in their simple textbook form in practice, they very frequently constitute important
components of larger problems such as multiperiod planning models.

The features of a product mix problem are that there is a collection of products competing for a
finite set of resources. If there are m resources and » products, then the so-called “technology” is
characterized by a table with m rows and » columns of technologic coefficients. The coefficient in row
i, column j, is the number of units of resource i used by each unit of product j. The numbers in a row of
the table are simply the coefficients of a constraint in the LP. In simple product mix problems, these
coefficients are nonnegative. Additionally, associated with each product is a profit contribution per
unit and associated with each resource is an availability. The objective is to find how much to produce
of each product (i.e., the mix) to maximize profits subject to not using more of each resource than is
available.

The following product mix example will illustrate not only product mix LP formulations, but also:
1) representation of nonlinear profit functions and 2) the fact that most problems have alternative
correct formulations. Two people may develop different formulations of the same problem, but both
may be correct.

99

100 Chapter 6 Product Mix Problems

6.2 Example

A certain plant can manufacture five different products in any combination. Each product requires time
on each of three machines in the following manner (figures in minutes/unit):

Machine
Product 1 2 3
A 12 8 5
B 7 9 10
C 8 4 7
D 10 0 3
E 7 11 2

Each machine is available 128 hours per week.

Products 4, B, and C are purely competitive and any amounts made may be sold at respective
prices of $5, $4, and $5. The first 20 units of D and E produced per week can be sold at $4 each, but all
made in excess of 20 can only be sold at $3 each. Variable labor costs are $4 per hour for machines 1
and 2, while machine 3 labor costs $3 per hour. Material costs are $2 for products 4 and C, while
products B, D, and E only cost $1. You wish to maximize profit to the firm.

The principal complication is that the profit contributions of products D and E are not linear. You
may find the following device useful for eliminating this complication. Define two additional products
D, and E, which sell for $3 per unit. What upper limits must then be placed on the sale of the original
products D and E? The decision variables and their profit contributions are as follows:

Profit
Decision Contribution
Variables Definition per Unit
A Number of units of 4 produced per week 5-2=8%3
B Number of units of B produced per week 4-1=83
C Number of units of C produced per week 5-2=83
D Number of units of D not in excess of 20 $3
produced/week
D, Number of units of D produced in excess of 20 $2
per week*
E Number of units of £ not in excess of 20 $3
produced/week
E, Number of units of E produced in excess of 20 $2
M, Hours of machine 1 used per week -$4
M, Hours of machine 2 used per week -$4
M, Hours of machine 3 used per week -$3

*Total production of product D is D + D,.

Product Mix Problems Chapter 6 101

We will not worry about issues of sequencing the various products on each machine. This is
reasonable if the due-dates for the products are far enough in the future. Our problem in this case is to:

Maximize Revenues minus costs

Subject to
Minutes used equals minutes run on each machine,
At most 20 units each can be produced of products D and E,
Each machine can be run at most 128 hours.

More precisely, the formulation in LINGO is:

! Maximize revenue minus costs;
MAX = 3 * A+ 3 *B+3*C+3*D+ 2 *D2+ 3 *E
+ 2 * E2 - 4 * M1l - 4 * M2 - 3 * M3;
! Machine time used = machine time made available;
12*A + 7*B + 8*C + 10*D + 10*D2 + 7*E + 7*E2 - 60*M1 = 0;
8*A + 9*B + 4*C + 11*E + 11*E2 - 60*M2 = 0;
5¥A + 10*B + 7*C + 3*D + 3*D2 + 2*E + 2*E2 - 60*M3=0;

D <= 20; ! Max sellable at high price;
E <= 20;
'Machine availability;
Ml <= 128;
M2 <= 128;
M3 <= 128;
END

The first three constraints have the units of “minutes” and specify the hours of machine time as a
function of the number of units produced. The next two constraints place upper limits on the number of
high profit units of D and E that may be sold. The final three constraints put upper limits on the
amount of machine time that may be used and have the units of “hours”.

Constraint 2 can be first written as:

124+ 7B+ 8C+ 10D + 10D, + 7TE+ TE,
60
Multiplying by 60 and bringing M, to the left gives the second constraint. The solution is:

=M,

Optimal solution found at step: 4
Objective value: 1777.625

Variable Value Reduced Cost

A 0.0000000 1.358334

B 0.0000000 0.1854168

C 942.5000 0.0000000

D 0.0000000 0.1291668

D2 0.0000000 1.129167

E 20.00000 0.0000000

E2 0.0000000 0.9187501

M1 128.0000 0.0000000

M2 66.50000 0.0000000

M3 110.6250 0.0000000

102 Chapter 6 Product Mix Problems

Row Slack or Surplus Dual Price
1 1777.625 1.000000
2 0.0000000 0.2979167
3 0.0000000 0.6666667E-01
4 0.0000000 0.5000000E-01
5 20.00000 0.0000000
6 0.0000000 0.8125000E-01
7 0.0000000 13.87500
8 61.50000 0.0000000
9 17.37500 0.0000000

The form of the solution is quite simple to state: make as many of E as possible (20). After that,
make as much of product C as possible until we run out of capacity on machine 1.

This problem is a good example of one for which it is very easy to develop alternative
formulations of the same problem. These alternative formulations are all correct, but may have more or
less constraints and variables. For example, the constraint:

84+9B+4C+ 11E+ 11E,-60M,=0

can be rewritten as:
My = (84 + 9B +4C + 11E + 11E,)/60.

The expression on the right-hand side can be substituted for M, wherever M, appears in the
formulation. Because the expression on the right-hand side will always be nonnegative, the
nonnegativity constraint on M, will automatically be satisfied. Thus, M, and the above constraint can
be eliminated from the problem if we are willing to do a bit of arithmetic. When similar arguments are
applied to M| and M; and the implied divisions are performed, one obtains the formulation:

MAX = 1.416667*A + 1.433333*B + 1.85*C + 2.183334*D + 1.183333*D2 +
1.7*E + .7*E2;

! Machine time used = machine time made available;

12*A + 7*B + 8*C + 10*D + 10*D2 + 7*E + 7*E2 <= 7680;

8*A + 9*B + 4*C + 11*E + 11*E2 <= 7680;

5*A + 10*B + 7*C + 3*D + 3*D2 + 2*E + 2*E2 <= 7680;

! Product limits;

D < 20;

E < 20;

Product Mix Problems Chapter6 103

This looks more like a standard product mix formulation. All the constraints are capacity
constraints of some sort. Notice the solution to this formulation is really the same as the previous

formulation:

Optimal solution found at step: 6
Objective value: 1777.625

Variable Value Reduced Cost

A 0.0000000 1.358333

B 0.0000000 0.1854170

C 942.5000 0.0000000

D 0.0000000 0.1291660

D2 0.0000000 1.129167

E 20.00000 0.0000000

E2 0.0000000 0.9187500

Row Slack or Surplus Dual Price

1 1777.625 1.000000

2 0.0000000 0.2312500

3 3690.000 0.0000000

4 1042.500 0.0000000

5 20.00000 0.0000000

6 0.0000000 0.8125000E-01

The lazy formulator might give the first formulation, whereas the second formulation might be
given by the person who enjoys doing arithmetic.

6.3 Process Selection Product Mix Problems

A not uncommon feature of product mix models is two or more distinct variables in the LP
formulation may actually correspond to alternate methods for producing the same product. In this case,
the LP is being used not only to discover how much should be produced of a product, but also to select
the best process for producing each product.

A second feature that usually appears with product mix problems is a requirement that a certain
amount of a product be produced. This condition takes the problem out of the realm of simple product
mix. Nevertheless, let us consider a problem with the above two features.

The American Metal Fabricating Company (AMFC) produces various products from steel bars.
One of the initial steps is a shaping operation performed by rolling machines. There are three machines
available for this purpose, the B; B,, and Bs. The following table gives their features:

Labor
Speed Allowable Available Cost
in Feet Raw Material Hours Per Hour
Machine per Minute Thickness in Inches per Week Operating
B; 150 3/16 to 3/8 35 $10
B, 100 5/16 to 1/2 35 $15
Bs 75 3/8 to 3/4 35 $17

This kind of combination of capabilities is not uncommon. That is, machines that process larger
material operate at slower speed.

104 Chapter 6 Product Mix Problems

This week, three products must be produced. AMFC must produce at least 218,000 feet of "

material, 114,000 feet of % " material, and 111,000 feet of)4 " material. The profit contributions per

foot excluding labor for these three products are 0.017, 0.019, and 0.02. These prices apply to all
production (e.g., any in excess of the required production). The shipping department has a capacity
limit of 600,000 feet per week, regardless of the thickness.

What are the decision variables and constraints for this problem? The decision variables require

some thought. There is only one way of producing ;" material, three ways of producing % ", and two
ways of producing %4". Thus, you will want to have at least the following decision variables. For
numerical convenience, we measure length in thousands of feet:

B34 =1,000’s of feet of % " produced on B;,

B33 =1,000’s of feet of % " produced on B;,

Bus =1,000’s of feet of % " produced on By,

Bsg =1,000’s of feet of % " produced on Bs,

B4, =1,000’s of feet of % " produced on By,

Bs, = 1,000’s of feet of % " produced on Bs.

For the objective function, we must have the profit contribution including labor costs. When this is
done, we obtain:

Profit Contribution
Variable per Foot
Biy 0.01589
Bsg 0.01789
Byg 0.01650
Bsg 0.01522
By, 0.01750
Bs; 0.01622

Clearly, there will be four constraints corresponding to AMFC’s three scarce machine resources
and its shipping department capacity. There should be th